

Hitachi Freedom Storage™ Lightning 9900™ V Series IBM® AIX® Configuration Guide

© 2002 Hitachi Data Systems Corporation, ALL RIGHTS RESERVED

Notice: No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or stored in a database or retrieval system for any purpose without the express written permission of Hitachi Data Systems Corporation.

Hitachi Data Systems reserves the right to make changes to this document at any time without notice and assumes no responsibility for its use. Hitachi Data Systems products and services can only be ordered under the terms and conditions of Hitachi Data Systems' applicable agreements. All of the features described in this document may not be currently available. Refer to the most recent product announcement or contact your local Hitachi Data Systems sales office for information on feature and product availability.

This document contains the most current information available at the time of publication. When new and/or revised information becomes available, this entire document will be updated and distributed to all registered users.

Trademarks

Hitachi Data Systems is a registered trademark and service mark of Hitachi, Ltd., and the Hitachi Data Systems design mark is a trademark and service mark of Hitachi, Ltd.

Extended Serial Adapter, ExSA, Hitachi Freedom Storage, Hitachi LUN Manager, and Lightning 9900 are trademarks of Hitachi Data Systems Corporation.

AIX, ESCON, IBM, POWERserver, POWERstation, RISC System/6000, RS/6000, S/390, SP, and System Management Interface Tool (SMIT), and FICON are either registered trademarks or trademarks of International Business Machines Corporation (IBM) in the United States and other countries.

UNIX is a registered trademark of X/Open Company Limited in the United States and other countries and is licensed exclusively through X/Open Company Limited.

All other brand or product names are or may be trademarks or service marks and are used to identify products or services of their respective owners.

Notice of Export Controls

Export of technical data contained in this document may require an export license from the United States government and/or the government of Japan. Please contact the Hitachi Data Systems Legal Department for any export compliance questions.

Document Revision Level

Revision	Date	Description
MK-92-RD119-0	April 2002	Initial release

Source Documents For This Revision

The following source documents were used to produce this 9900V configuration guide:

- Hitachi DKC310 Disk Subsystem SCSI/Fibre Installation Manual, IBM RS/6000 series, AIX Version 4.1, 4.2, 4.3, revision 3.
- Hitachi Freedom Storage[™] Lightning 9900[™] V Series LUN Manager User's Guide (MK-92RD105).
- Hitachi Freedom Storage[™] Lightning 9900[™] AIX Configuration Guide (MK-91RD014).

Referenced Documents

- Hitachi 9900V User and Reference Guide (MK-92RD100).
- Hitachi 9900V Remote Console Storage Navigator User's Guide (MK-92RD101).
- Hitachi 9900V LUN Management User's Guide (MK-92RD105).
- Hitachi 9900V LUN Expansion (LUSE) and Virtual LVI/LUN User's Guide (MK-92RD104).
- Hitachi Freedom Storage[™] RapidXchange User's Guide (MK-91RD052).
- Hitachi Freedom Storage[™] Hitachi Dynamic Link Manager User's Guide for AIX[™] (MK-92DLM111).

Preface

The Hitachi Freedom StorageTM Lightning 9900TM V Series IBM[®] AIX[®] Configuration Guide describes and provides instructions for installing and configuring the devices on the Hitachi 9900V disk array subsystem for operation with an IBM[®] AIX[®] operating system. This configuration guide assumes that:

- the user has a background in data processing and understands direct-access storage device subsystems and their basic functions,
- the user is familiar with the 9900V array subsystem,
- the user is familiar with the IBM[®] AIX[®] operating system and the IBM[®] RISC System/6000 (RS/6000[®]), POWERstation[®], POWERserver[®], and/or SP system,
- the user is familiar with the AIX[®] Journaled File System, system commands, and utilities.

Note: The term "9900V" refers to the entire Hitachi 9900V subsystem family, unless otherwise noted. Please refer to the *Hitachi Freedom Storage* > 9900V User and Reference Guide (MK-92RD100) for further information on the 9900V disk array subsystems.

For further information on IBM[®] AIX[®], please consult the IBM[®] AIX[®] online help and/or user documentation, or contact IBM[®] technical support.

Microcode Level

This document revision applies to 9900V microcode version 20-01-xx and higher.

COMMENTS

Please send us your comments on this document: <u>doc.comments@hds.com</u>.

Make sure to include the document title, number, and revision. Please refer to specific page(s) and paragraph(s) whenever possible. (All comments become the property of Hitachi Data Systems Corporation.)

Thank you!

Contents

Chapter 1	Overview of IBM® AIX® Configuration1							
	1.1 IBM [®] AIX [®] Configuration1							
	1.2 The 9900V Array Subsystem1							
	1.3 Device Types and Configuration Procedures2							
Chapter 2	Preparing for New Device Configuration7							
	2.1 Configuration Requirements7							
	2.2 Installing the 9900V Subsystem							
	2.3 Preparing to Connect the 99009							
	2.3.1 Setting the Host Mode for the 9900V Ports							
	2.3.2 Configuring the 9900V Fibre-Channel Ports							
	2.4 Connecting the 9900V Subsystem							
Chapter 3	Configuring the New Devices15							
	3.1 Changing the Device Parameters							
	3.1.1 Changing Device Parameters for the 990016							
	3.2 Assigning the New Devices to Volume Groups and Setting the Partition Size 19							
	3.3 Creating, Mounting, and Verifying the File Systems							
	3.3.1 Creating the File System							
	3.3.2 Mounting and Verifying the File Systems							
Chapter 4	Middleware and SNMP Configuration29							
	4.1 Host Failover							
	4.2 Path Failover							
	4.3 SNMP Remote Subsystem Management							
Chapter 5	Troubleshooting							
	5.1 Troubleshooting							
	5.2 Calling the Hitachi Data Systems Technical Support Center							
Appendix A	Acronyms and Abbreviations							
Appendix B	SCSI TID Maps for Fibre-Channel Adapters							
Appendix C	Online Installation and Deinstallation of Devices45							
Index								

List of Figures

Figure 2.1	Add New Host Group Panel	9
Figure 2.2	The Port Mode Panel (Port Tab)	11
Figure 2.3	Verifying New Device Recognition	13
Figure 3.1	Changing the Device Parameters Using SMIT®	17
Figure 3.2	Verifying the Device Parameters Using the lsattr -E -1 hdiskx Command	18
Figure 3.3	Verifying the Device Parameters Using the lscfg -vl hdisk1 Command	18
Figure 3.4	Assigning Devices to Volume Groups and Setting the Partition Size	20
Figure 3.5	Adding a Journaled File System Using SMIT [®]	24
Figure 3.6	Verifying Creation of Journaled File System	24
Figure 3.7	Determining the Maximum File System Size	25
Figure 3.8	Verifying the Auto-Mounted File Systems	27
Figure 3.9	Final File System Verification	27
Figure 4.1	9900V SNMP Environment	30

List of Tables

Table 1.1	9900V Device Specifications for IBM® AIX® Operations	
Table 1.2	Volume Usage for Device Categories	5
Table 2.1	9900V Fibre Parameter Settings	10
Table 2.2	Available AL-PA Values	11
Table 2.3	Device Data Table (Sample)	14
Table 3.1	R/W Time-Out and Queue Type Requirements	16
Table 3.2	Queue Depth Requirements for the 9900V Devices	16
Table 3.3	Partition Sizes for Standard LUs	21
Table 3.4	Partition Sizes for VLL LUSE Devices	21
Table 3.5	Partition Sizes for LUSE Devices	22
Table 3.6	Journaled File System Size	25
Table 3.7	Number of bytes per inode for LUSE devices	
Table 3.8	Number of bytes per inode for VLL	
Table 3.9	Number of bytes per inode for VLL LUSE	26
Table 5.1	Troubleshooting	31
Table B.1	SCSI TID Map (ScanDown=0)	
Table B.2	SCSI TID Map (ScanDown=1)	41

Chapter 1 Overview of IBM® AIX® Configuration

1.1 IBM[®] AIX[®] Configuration

This document describes the requirements and procedures for connecting the 9900V subsystem to an IBM[®] AIX[®] system and configuring the new 9900V devices for operation with the IBM[®] AIX[®] operating system. The Hitachi Data Systems representative performs the physical installation of the 9900V subsystem. The user prepares for 9900V subsystem installation and configures the new 9900V devices with assistance as needed from the Hitachi Data Systems representative.

Configuration of the 9900V SCSI disk devices for IBM® AIX® operations includes:

- Changing the device parameters (see section 3.1).
- Assigning the new devices to volume groups and setting the partition size (see section 3.2).
- Creating the Journaled File Systems (see section 3.3.1).
- Mounting and verifying the file systems (see section 3.3.2).

Note on the term "SCSI disk": The 9900V logical devices are defined to the host as SCSI disk devices, even though the interface is fibre-channel.

1.2 The 9900V Array Subsystem

The Hitachi 9900V RAID subsystem supports concurrent attachment to multiple UNIX[®]-based and PC-server platforms. Please contact your Hitachi Data Systems account team for the latest information on platform support. The 9900V subsystem provides continuous data availability, high-speed response, scaleable connectivity, and expandable capacity for PC server and open-system storage. The 9900V subsystem can operate with multihost applications and host clusters, and is designed to handle very large databases as well as data warehousing and data mining applications that store and retrieve terabytes of data.

The Hitachi 9900V subsystem can be configured with fibre-channel, FICON^m, and/or ExSA^m (Extended Serial Adapter^m, compatible with ESCON[®] protocol) ports to provide connectivity with S/390[®] mainframe hosts as well as open-system hosts. For further information on the 9900V subsystem, please refer to the *Hitachi Freedom Storage^m 9900V User and Reference Guide* (MK-92RD100), or contact your Hitachi Data Systems account team.

1.3 Device Types and Configuration Procedures

Table 1.1 lists the device specifications for the 9900V devices. Table 1.2 shows the volume usage (i.e., file system or raw device) for the 9900V devices. The 9900V subsystem allows the following types of logical devices (also called LDEVs) to be installed and configured for operation with the IBM[®] AIX[®] operating system:

OPEN-*x* **Devices.** The OPEN-*x* logical units (LUs) (e.g., OPEN-3) are disk devices of predefined sizes. The 9900V subsystem currently supports OPEN-3, OPEN-9, OPEN-E, and OPEN-L devices. Please contact your Hitachi Data Systems account team for the latest information on supported LU types.

LUSE Devices (OPEN-x*n). The LUSE devices are combined LUs which can be from 2 to 36 times larger than standard OPEN-*x* LUs. The LUN Expansion (LUSE) feature of the 9900V subsystem enables you to configure these custom-size devices. LUSE devices are designated as OPEN-*x**n, where *x* is the LU type (e.g., OPEN-9*n) and $2 \le n \le 36$. For example, a LUSE device created from ten OPEN-3 LUs would be designated as an OPEN-3*10 disk device. This capability enables the server host to combine logical devices and access the data stored on the 9900V subsystem using fewer LU numbers (LUNs). For further information on the LUSE feature, please refer to the *Hitachi 9900V LUN Expansion and Virtual LVI/LUN User's Guide* (MK-92RD104).

VLL Devices (OPEN-x VLL). The Virtual LVI/LUN (VLL) software on the Remote Console PC enables you to configure Virtual LVI/LUN devices by "slicing up" a single LU into several smaller LUs. You can choose the device size that best fits your application needs to improve your host access to frequently used files. For further information on Virtual LVI/LUN, please refer to the *Hitachi Freedom Storage™ 9900V LUN Expansion (LUSE) and Virtual LVI/LUN User's Guide* (MK-92104). *Note*: The OPEN-L LU does not support Virtual LVI/LUN.

VLL LUSE Devices (OPEN-x*n VLL). The VLL LUSE devices combine Virtual LVI/LUN devices (instead of standard OPEN-x LUs) into LUSE devices. The Virtual LVI/LUN software is used first to create custom-size Virtual LVI/LUN devices, and then the LUSE software is used to combine (concatenate) these Virtual LVI/LUN devices. The user can combine from 2 to 36 Virtual LVI/LUN devices into one VLL LUSE device. For example, an OPEN-3 LUSE volume created from ten OPEN-3 VLL volumes would be designated as an OPEN-3*10 VLL device. *Note*: The OPEN-L LU does not support Virtual LVI/LUN.

HRX Devices (3390-3A/B/C, OPEN-x-HRXoto). The Hitachi RapidXchange (HRX) feature of the 9900V subsystem enables user data to be shared across S/390[®], UNIX[®], and PC server platforms using special multiplatform volumes. The Virtual LVI/LUN (VLL) feature can also be applied to HRX devices for maximum flexibility in volume size. For further information on HRX, please refer to the *Hitachi RapidXchange (HRX) User's Guide* (MK-90RD052), or contact your Hitachi Data Systems account team. The HRX devices must be installed and accessed as raw devices. UNIX[®]/PC server hosts must use HRX to access the HRX devices as raw devices (i.e., no disk partition, no file system, no mount operation).

Note: The 3390-3B devices are write-protected from UNIX[®]/PC server access. The 9900V subsystem will reject all UNIX[®]/PC server write operations (including fibre-channel adapters) for the 3390-3B devices.

WARNING: The 3390-3A/C, and OPEN-*x*-HRXoto devices are **not** write-protected for UNIX[®]/PC server access. Do not execute any write operations on these devices. Do not create a partition or file system on these devices. This will overwrite any data on the HRX device and also prevent the HRX software from accessing the device.

Device Type (Note 1)	Category (Note 2)	Vendor Name	Product Name	# of Blocks (512-byte blk)	Sector Size (bytes)	# of Data Cylinders	# of Heads	# of Sectors per Track	Capacity MB <i>(Note 3)</i>
OPEN-3	SCSI Disk	HITACHI	OPEN-3	4806720	512	3338	15	96	2347
OPEN-9	SCSI Disk	HITACHI	OPEN-9	14423040	512	10016	15	96	7042
OPEN-E	SCSI disk	HITACHI	OPEN-E	28452960	512	19759	15	96	13893
OPEN-L	SCSI disk	HITACHI	OPEN-L	71192160	512	49439	15	96	34761
OPEN-3*n	SCSI Disk	HITACHI	OPEN-3*n	4806720*n	512	3338*n	15	96	2347*n
OPEN-9*n	SCSI Disk	HITACHI	OPEN-9*n	14423040*n	512	10016*n	15	96	7042*n
OPEN-E*n	SCSI disk	HITACHI	OPEN-E*n	28452960*n	512	19759*n	15	96	13893*n
OPEN-L*n	SCSI disk	HITACHI	OPEN-L*n	71192160*n	512	49439*n	15	96	34761*n
OPEN-3 VLL	SCSI Disk	HITACHI	OPEN-3-CVS	Note 4	512	Note 5	15	96	Note 6
OPEN-9 VLL	SCSI Disk	HITACHI	OPEN-9-CVS	Note 4	512	Note 5	15	96	Note 6
OPEN-E VLL	SCSI disk	HITACHI	OPEN-E-CVS	Note 4	512	Note 5	15	96	Note 6
OPEN-3*n VLL	SCSI Disk	HITACHI	OPEN-3*n-CVS	Note 4	512	Note 5	15	96	Note 6
OPEN-9*n VLL	SCSI Disk	HITACHI	OPEN-9*n-CVS	Note 4	512	Note 5	15	96	Note 6
OPEN-E*n VLL	SCSI disk	HITACHI	OPEN-E*n-CVS	Note 4	512	Note 5	15	96	Note 6
3390-3A	HRXotm/mto	HITACHI	3390-3A	5820300	512	3345	15	116	2844
3390-3B	HRXmto	HITACHI	3390-3B	5816820	512	3343	15	116	2842
3390-3C	HRXotm	HITACHI	OP-C-3390-3C	5820300	512	3345	15	116	2844
HRX OPEN-3	HRXoto	HITACHI	OPEN-3	4806720	512	3338	15	96	2347
3390-3A VLL	HRXotm/mto	HITACHI	3390-3A-CVS	Note 4	512	Note 5	15	116	Note 6
3390-3B VLL	HRXmto	HITACHI	3390-3B-CVS	Note 4	512	Note 5	15	116	Note 6
3390-3C VLL	HRXotm	HITACHI	OP-C-3390-3C- CVS	Note 4	512	Note 5	15	116	Note 6
HRX OPEN-3 VLL	HRXoto	HITACHI	OPEN-3-CVS	Note 4	512	Note 5	15	96	Note 6

 Table 1.1
 9900V Device Specifications for IBM® AIX® Operations

Note 1: The availability of a specific 9900V device type depends on the level of microcode installed on the 9900V subsystem.

Note 2: The category of a device (SCSI disk or HRX) determines its volume usage. Table 1.2 shows the volume usage for SCSI disk devices and HRX devices. The SCSI disk devices (OPEN-x, VLL, LUSE, VLL LUSE) are usually formatted with file systems for IBM[®] AIX[®] operations. The HRX devices (3390-3A/B/C, OPEN-x-HRXoto) must be installed as raw devices and can only accessed using HRX. Do not create a partition or file system on any device used for HRX operations.

Table 1.2 Volume Usage for Device Categories

Category	Device Type	Volume Usage
SCSI Disk	OPEN-x, OPEN-x VLL, OPEN-x*n LUSE, OPEN-x*n VLL LUSE	File System*
HRX	3390-3A/B/C 3390-3A/B/C VLL OPEN-x for HRXoto, OPEN-x VLL for HRXoto	Raw Device

*Note: The SCSI disk devices can also be used as raw devices (e.g. some database applications use raw devices).

Note 3: The device capacity can sometimes be changed by the BIOS or host adapter board. These device capacities are calculated based on $1 \text{ MB} = 1024^2$ bytes rather than 1000^2 bytes.

Note 4: The number of blocks for a Virtual LVI/LUN volume is calculated as follows: # of blocks = (# of data cylinders) × (# of heads) × (# of sectors per track) Example: For an OPEN-3 VLL volume with capacity = 37 MB: # of blocks = (53 cylinders-see note 3) × (15 heads) × (96 sectors per track) = 76320

Note 5: The number of data cylinders for a Virtual LVI/LUN volume is calculated as follows $(\uparrow...\uparrow$ means that the value should be rounded up to the next integer):

- The number of data cylinders for an OPEN-x VLL volume =
 # of cylinders = ↑ (capacity (MB) × 1024/720 ↑ Example: For an OPEN-3 VLL volume with capacity = 37 MB:
 # of cylinders = ↑37 × 1024/720↑ = ↑52.62↑ (rounded up to next integer) = 53 cylinders
- The number of data cylinders for a VLL LUSE volume = # of cylinders = ↑ (capacity (MB) × 1024/720 ↑ × n Example: For an OPEN-3 VLL LUSE volume with capacity = 37 MB and n = 4 # of cylinders = ↑37 × 1024/720↑ × 4 = ↑52.62↑ × 4 = 53 × 4 = 212
- The number of data cylinders for a 3390-3A/C = # of cylinders = (number of cylinders) + 9
- The number of data cylinders for a 3390-3B VLL volume = # of cylinders = (number of cylinders) + 7

Note 6: The size of an OPEN-*x* VLL volume is specified by capacity in MB, not by number of cylinders. The user specifies the volume size.

Chapter 2 Preparing for New Device Configuration

2.1 Configuration Requirements

The requirements for 9900V IBM[®] AIX[®] configuration are:

• Hitachi 9900V subsystem, all-open or multiplatform configuration:

Note: The LUN Manager software is used to configure the fibre-channel (FC) ports. If remote LUN Manager is not installed, please contact your Hitachi Data Systems account team for information on LUN configuration services.

Note: The availability of 9900V features and devices depends on the level of microcode installed on the 9900V subsystem.

- IBM[®] RS/6000[®], POWERstation[®], POWERserver[®], or SP series system.
- IBM[®] AIX[®] operating system, version 4.3.3 or 5L. *Important* Please contact IBM[®] to make sure the most current OS patches are installed on the IBM[®] system(s).

Note: Hitachi Data Systems plans to support future releases of IBM[®] AIX[®]. For the latest information on AIX[®] version support, contact your Hitachi Data Systems account team.

- Root (superuser) login access to the IBM[®] system.
- Fibre-channel adapters. Make sure to install all utilities, tools, and drivers that come with the adapter(s).
 - The 9900V subsystem supports 2 Gbps fibre-channel interface, including shortwave non-OFC (open fibre control) optical interface, and multimode optical cables with LC connectors and 1 Gbps fibre-channel interface, including shortwave non-OFC optical interface, and multimode optical cables with SC connectors.
 - For information on supported fibre-channel adapters, optical cables, hubs, and fabric switches, please contact your Hitachi Data Systems account team or the Hitachi Data Systems Support Center (see section 5.2). For other information on supported fibre-channel adapters and driver requirements, please refer to the user documentation for the adapter or contact the vendor.

2.2 Installing the 9900V Subsystem

The 9900V subsystem comes with all hardware and cabling required for installation. Installation of the 9900V subsystem involves the following activities:

- Hardware installation. The Hitachi Data Systems representative performs hardware installation as specified in the 9900V Maintenance Manual. Follow all precautions and procedures in the 9900V maintenance manual. Check all specifications to ensure proper installation and configuration. Hardware installation includes:
- Assembling all hardware and cabling.
- Installing and formatting the logical devices (LDEVs). Make sure to get the desired LDEV configuration information from the user, including the desired number of OPEN-x, LUSE, VLL, VLL LUSE, and multiplatform (HRX) devices.
- Installing the fibre-channel adapters and cabling. Note: The total length of the fibre cables that are attached to each fibre-channel adapter must not exceed 500 meters (1,640 feet). Do not connect any OFC-type connector to the 9900V subsystem. Do not connect/disconnect fibre-channel cabling that is being actively used for I/O, because this can cause the IBM[®] AIX[®] system to hang. Always confirm that the devices on the fibre cable are offline before connecting or disconnecting the fibre cable.
- Setting the fibre topology. The fibre topology parameters for each 9900V fibre-channel port depend on the type of device to which the 9900V port is connected. Determine the topology parameters supported by the device, and set your topology accordingly (see section 2.3.2). The type of 9900V port is also important.
- LUN Manager installation. The user or Hitachi Data Systems representative can perform this activity. You will use the LUN Manager software to configure the 9900V fibrechannel ports. For instructions on installing the LUN Manager software, please refer to the Hitachi Freedom Storage[™] 9900V Remote Console - Storage Navigator User's Guide (MK-92RD101). For further information on LUN Manager, please refer to the Hitachi Freedom Storage[™] 9900V LUN Manager User's Guide (MK-92RD105).

Note: If the remote LUN Manager feature is not installed, the Hitachi Data Systems representative can configure fibre-channel ports for you using the SVP of the subsystem. Please contact your Hitachi Data Systems account team for further information on fibre-channel configuration services.

2.3 Preparing to Connect the 9900

Before the 9900V is connected to the AIX[®] system, you must perform the following tasks:

- Set the host mode for the 9900V fibre-channel port(s) (see section 2.3.1), and
- Configure the 9900V fibre-channel ports (see section 2.3.2).

You will use the LUN Manager Remote Console software to set the host modes for and configure the 9900V fibre ports. For instructions on using the LUN Manager software, please refer to the *Hitachi Freedom Storage*[™] 9900V LUN Manager User's Guide (MK-92RD105). After completing these steps, you will shut down the AIX[®] system, connect the 9900V subsystem, and then restart the AIX[®] system (see section 2.3).

Note: If the LUN Manager feature is not installed, please contact your Hitachi Data Systems account team for information on fibre-channel configuration services.

2.3.1 Setting the Host Mode for the 9900V Ports

The 9900V ports have special modes that must be set for the connected operating system. *Note*: The required host mode setting for 9900V AIX[®] operations is **OF**, which is **different** than the standard mode shown in the following panel. Use the LUN Manager software to ensure that the host mode for each fibre port connected to the AIX[®] system is **OF**. *Note*: If you are connecting an FC6228 adapter to a 2 gbps fibre-channel P/K (8HSE) port, the host mode must be **1F**. Figure 2.2 shows the Add New Host Group panel.

Web Console - Hitachi 9980V/9940V								
Add New H	ost Group							
Group Name	new-hg	(Max. 8	characters)					
Host Mode	00[Standard]	•						
		ок	Cancel					
Java Applet Windo	N							

Figure 2.1 Add New Host Group Panel

2.3.2 Configuring the 9900V Fibre-Channel Ports

You also need to configure the 9900V fibre-channel ports to define the fibre parameters (see Table 2.1) and port addresses (see Table 2.2). You will use the LUN Manager software to configure the 9900V fibre-channel ports. For instructions on using LUN Manager, please refer to the *Hitachi Freedom Storage*TM 9900V LUN Manager User's Guide (MK-92RD105).

Note: The 9900V subsystem supports up to 256 LUs per fibre-channel port, but connectivity with AIX[®] systems is limited to 128 LUs per port.

Fibre topology Figure 2.2 shows the Port Mode Panel, which shows the port name, port type, host speed, port address (Loop ID), fabric switch (on or off) and topology (type of connection). Table 2.1 explains the fibre-parameter settings on this panel. You will select the appropriate settings for each 9900V fibre-channel port based on the device to which the port is connected. Determine the topology parameters supported by the device, and set your topology accordingly. The type of 9900V port is also important. *Note*: If you plan to connect different types of servers to the 9900V via the same fabric switch, you must use the **zoning** function of the fabric switch.

Port addressing. In fabric environments, the port addresses are assigned automatically by fabric switch port number and are not controlled by the 9900V port settings. In arbitrated loop environments, you will set the port addresses by entering an AL-PA (arbitrated-loop physical address, or loop ID). Table 2.2 shows the available 9900V AL-PA values ranging from 01 to EF. Fibre-channel protocol uses the AL-PAs to communicate on the fibre-channel link, but the software driver of the platform host adapter translates the AL-PA value assigned to the 9900V port to a SCSI target ID (TID). See Appendix B for a description of the AL-PA-to-TID translation.

Note on loop ID conflict: The AIX[®] system assigns port addresses from lowest (01) to highest (EF). To avoid loop ID conflict, assign the port addresses from highest to lowest (i.e., starting at EF). The AL-PAs should be unique for each device on the loop to avoid conflicts. Do not use more than one port address with the same TID in same loop (e.g., addresses EF and CD both have TID 0. See Appendix B for the AL-PA-to-TID mapping).

Fabric Parameter	Connection Parameter	Provides:		
ON	FC-AL	FL-port (Fabric port).		
ON	Point-to-Point	F-port (Fabric port).		
OFF	FC-AL	NL-port (private arbitrated loop)		
OFF	Point-to-Point	Not supported		

Table 2.1 9900V Fibre Parameter Settings

Note: Please contact Hitachi Data Systems for detail information about port topology configurations supported by each host bus adapter/switch combinations. Not all kinds of switches support F-port connection.

LUN Manager Port						
Port Mode						
Package			Port			
All 2 CHA-1P 2 CHA-1Q 2 CHA-1R 3 CHA-1S 3 CHA-2V	Port Name CL1-E CL1-F[E 2nd] CL1-G[E 3rd] CL1-H[E 4th]	Type Fibre Fibre Fibre Fibre	Host Speed 2GB/s 1GB/s 1GB/s 1GB/s	Addr.(Loop ID) E1 (4) AD (35) E0 (5) AB (37)	Fabric OFF ON OFF ON	Connection P-to-P FC-AL P-to-P FC-AL
HA-2W CHA-2X	Change Port Mo		Dod V]	•
	Mode	or the s		Current		
		Host Spe Fibre Add	ed: 168/s Iress: AD (35))	>> >>	▼ ▼
		Fabric : Connecti	ON FC-AL		>> >>	v
				1	Set	Clear
					Apply	Cancel

Figure 2.2 The Port Mode Panel (Port Tab)

-							
EF	CD	B2	98	72	55	3A	25
E8	CC	B1	97	71	54	39	23
E4	СВ	AE	90	6E	53	36	1F
E2	CA	AD	8F	6D	52	35	1E
E1	C9	AC	88	6C	51	34	1D
E0	C7	AB	84	6B	4E	33	1B
DC	C6	AA	82	6A	4D	32	18
DA	C5	A9	81	69	4C	31	17
D9	C3	A7	80	67	4B	2E	10
D6	BC	A6	7C	66	4A	2D	0F
D5	BA	A5	7A	65	49	2C	08
D4	B9	A3	79	63	47	2B	04
D3	B6	9F	76	5C	46	2A	02
D2	B5	9E	75	5A	45	29	01
D1	B4	9D	74	59	43	27	
CE	B3	9B	73	56	3C	26	

2.4 Connecting the 9900V Subsystem

After you have configured the 9900V fibre-channel ports, you are ready to connect the 9900V subsystem to the IBM[®] AIX[®] system. The 9900V comes with all hardware and cabling required for connection to the host system(s).

To connect the 9900V subsystem to the IBM[®] system:

- 1. **Verify subsystem installation**. The Hitachi Data Systems representative verifies the fibre-port address configuration and the status of the fibre-channel adapters and LDEVs (normal).
- 2. Shut down and power off the IBM[®] system. The user should perform this activity. You must shut down and power off the AIX[®] system before connecting the 9900V.
 - a) Shut down the IBM[®] system.
 - a) When shutdown is complete, power off the IBM[®] AIX[®] display.
 - b) Power off all peripheral devices except for the 9900V subsystem.
 - c) Power off the IBM host system. You are now ready to connect the 9900V subsystem.
- 3. Connect the 9900V to the IBM[®] system. The Hitachi Data Systems representative installs the fibre cables between the 9900V and the IBM[®] system. *Note*: The Hitachi Data Systems representative must use the 9900V Maintenance Manual during all installation activities. Follow all precautions and procedures in the maintenance manual, and always check all specifications to ensure proper installation and configuration.
- 4. **Power on and boot up the IBM**[®] system. The user should perform this activity. To power on the IBM[®] system after connecting the 9900V
 - a) Power on the IBM[®] system display.
 - b) Power on all peripheral devices. The 9900V subsystem should already be on, the host modes should already be set, and the fibre-channel ports should already be configured. If the host modes or fibre ports are configured after the IBM[®] system is powered on, the IBM[®] system may need to be restarted in order to recognize the new devices.
 - c) Confirm the ready status of all peripheral devices, including the 9900.
 - d) Power on and boot up the IBM[®] system connected to the 9900.

2.5 Verifying New Device Recognition

The final step before configuring the new 9900V disk devices is to verify that the host system recognizes the new devices. The host system automatically creates a device file for each new device recognized. Hitachi Data Systems recommends that the devices should be installed and formatted with the fibre ports configured before the host system is powered on. If the system is not restarted, the user must issue the **cfgmgr** command to force the system to check the buses for new devices.

To verify new device recognition:

- 1. Log in to the host system as root.
- 2. Display the system device data using the Isdev -C -c disk command (see Figure 2.3).
- 3. Verify that the system recognizes all new disk devices, including OPEN-*x*, LUSE, VLL, VLL LUSE, and HRX devices. The devices are listed by device file name.
- 4. Make a blank table (see Table 2.3 for a sample table) for recording the 9900V device data. The table must include the device file name, bus number, TID, LUN, and device type for each new device.
- 5. Record the device information for all new devices in your device data table (see Table 2.3). You will need this information in order to change the device parameters.

Note: This sample panel shows the following information: The device hdisk1 is TID=2, LUN=0 on bus 1. The device hdisk2 is TID=2, LUN=1 on bus 1.

Figure 2.3 Verifying New Device Recognition

Note: You will need the device file names for the HRX devices when you create the HRX volume definition file (datasetmount.dat). For example, if hdisk3 is a 3390-3B HRX device, the entry for this volume in the HRX volume definition file is:

\\.\PHYSICALDRIVE3 XXXXXX 3390-3B (XXXXXX is the VOLSER)

Device File Name	Bus No.	TID	LUN	Device Type	Alternate Path(s)		
hdisk1					TID: LUN:	TID: LUN:	
hdisk2					TID: LUN:	TID: LUN:	
hdisk3					TID: LUN:	TID: LUN:	
hdisk4					TID: LUN:	TID: LUN:	
hdisk5					TID: LUN:	TID: LUN:	
hdisk6					TID: LUN:	TID: LUN:	
hdisk7					TID: LUN:	TID: LUN:	
hdisk8					TID: LUN:	TID: LUN:	
hdisk9					TID: LUN:	TID: LUN:	
and so on							

Table 2.3 Device Data Table (Sample)

Chapter 3 Configuring the New Devices

Configuration of the 9900V disk devices is performed by the user and requires root (superuser) access to the AIX[®] system. The host modes for the 9900V fibre ports must already be set, and the 9900V fibre ports must already be configured (refer to Chapter 2). If any of these steps is performed after the AIX[®] system is powered on, you must stop and restart the system before configuring the new devices.

Configuration of the 9900V SCSI disk devices for IBM® AIX® operations includes:

- Changing the device parameters (see section 3.1),
- Assigning the new devices to volume groups and setting the partition size (see section 3.2),
- Creating, mounting and verifying the Journaled file systems (see section 3.3).

AL-PA to SCSI TID mapping: For information on the fibre-channel AL-PA to SCSI TID mapping, see Appendix B.

Online device installation: For information on configuring newly installed 9900V devices without rebooting the AIX[®] system, see Appendix C.

Note on the term "SCSI disk": The 9900V logical devices are defined to the host as SCSI disk devices, even though the interface is fibre-channel.

3.1 Changing the Device Parameters

3.1.1 Changing Device Parameters for the 9900

When the device files are created, the IBM[®] system sets the device parameters to the system default values. You must change the read/write (r/w) time-out, queue type, and queue depth parameters for each new 9900V device. Table 3.1 specifies the r/w time-out and queue type requirements for the 9900V devices. Table 3.2 specifies the queue depth requirements for the 9900V devices.

AIX[®] uses the Logical Volume Manager (LVM) (accessed from within SMIT[®]) to manage data storage. You can use either SMIT[®] or the AIX[®] command line to perform this procedure. Make sure to set the parameters for the HRX devices as well as the SCSI disk devices, and that you use the same settings and device parameters for all 9900V devices.

Table 3.1 R/W Time-Out and Queue Type Requirements

Parameter Name	Default Value	Required Value for 9900
Read/write time-out	30	60
Queue type	none	simple

Table 3.2	Queue Depth R	equirements for	the 9900V Devices

Parameter	Requirement
Queue depth per LU	≤ 32
Queue depth per port (MAXTAGS)	\leq 256 per port

Note: You can adjust the queue depth for the 9900V devices later as needed (within the specified range) to optimize the I/O performance of the devices.

3.1.1.1 Changing Device Parameters Using SMIT®

To change the device parameters using SMIT[®]:

- 1. Enter **smit** on the command line to start SMIT[®].
- 2. On the SMIT[®] System Management panel, select **Devices** to bring up the Devices panel.
- 3. Select **Fixed Disk** to bring up the Fixed Disk panel.
- 4. Select **Change/Show Characteristics of a Disk** to bring up the Disk panel (see Figure 3.1).
- 5. Select the desired device from the **Disk** menu to bring up the Change/Show Characteristics of a Disk panel.
- 6. Enter the desired queue depth (refer to Table 3.2), queue type (**simple**), and read/write time-out value (**60**), and then press **Enter** to complete the parameter changes.
- 7. Repeat steps (5) and (6) for each new device on the 9900V subsystem.
- 8. Verify that the parameters for all devices were successfully changed using the Isattr -E -1 hdiskx command.

Change/Show Characteristics of a Disk						
Type or select val	ues in entry fields	•				
Press Enter AFTER	making all desired	changes.				
[MORE4]						
Status						
Location						
Parent adapter						
Connection addre	SS					
Physical volume	IDENTIFIER					
ASSIGN physical	volume identifier	n	0			
Queue DEPTH		[8]]		← See Tá	able 3.2.
Queuing TYPE		[s	imple]		🗲 Enter	simple here.
Use QERR Bit		[y	es]			
Device CLEARS it	s Queue on Error	[n	o]			
READ/WRITE time	out value	[6	0]		🗲 Enter	60 here.
START unit time	out value	[6	0]			
REASSIGN time ou	t value	[1	20]			
APPLY change to 1	DATABASE only	n	0			
[BOTTOM]						
Fl=Help	F2=Refresh	F3=Cancel		F4=List		
F5=Reset	F6=Command	F7=Edit		F8=Image		
F9=Shell	F10=Exit	Enter=Do				

Figure 3.1 Changing the Device Parameters Using SMIT®

3.1.1.2 Changing Device Parameters From the Command Line

To change the device parameters from the AIX[®] command line:

- 1. At the AIX[®] command line prompt, enter **Isattr -E -I hdiskx** to display the parameters for the specified device.
 - 'hdiskx' is the device file name, e.g., hdisk2
 - You can also use the **lscfg** -vl hdiskx command (see Figure 3.3).
- Change the device parameters by using the chdev -l hdiskx -a rw_timeout='60' -a q_type='simple' -a queue_depth='x' command. (x is used to indicate the desired queue depth, within the limits specified in Table 3.2.)
- 3. Repeat steps (1) and (2) for each new device on the 9900.
- 4. Verify that the parameters for all devices were successfully changed using either the **Isattr -E -1 hdiskx** command or the **Iscfg -vI hdiskx** command.

#lsattr -E -1	hdisk1	
scsi_id	0xef	SCSI ID
lun_id	0x0	LUN ID
location		Location Label
ww_name	0x500490e802757500	FC World Wide Name for this LUN
pvid	000432871c6bbceb000000000000000	Physical volume identifier
queue_depth	2	Queue DEPTH
q_type	simple	Queuing TYPE
q_err	yes	Use QERR bit
clr_q	no	Device CLEARS its Queue on error
rw_timeout	60	READ/WRITE time out value
start_timeout	60	START unit time out value
reassign_to	120	REASSIGN time out value

Figure 3.2 Verifying the Device Parameters Using the Isattr -E -1 hdiskx Command

#lscfg -vl h	hdisk1	
DEVICE	LOCATION	DESCRIPTION
hdisk1	20-58-01	Other FC SCSI Disk Drive
Manufacture	rHIT2	ACHI
Machine Type	e and ModelOPEI	V-3 Type of device emulation
ROS Level an	nd ID	13130
Serial Number	er0400	7575 Type of Subsystem and serial number (hex)
Device Spect	ific.(Z0)000	002026300003A
Device Spec	ific.(Z1)0200	1A LCU (02) LDEV (00) and port (1A)
Device Spect	ific.(Z2)	

3.2 Assigning the New Devices to Volume Groups and Setting the Partition Size

After you have changed the device parameters, you can assign the new SCSI disk devices to new or existing volume groups and set the partition size. Table 3.3 specifies the partition sizes for standard LUs, Table 3.4 specifies the partition sizes for VLL LUSE devices, and Table 3.5 specifies the partition sizes for LUSE devices (OPEN-x*n).

Note: Do not assign the HRX devices (e.g., 3390-3A/B/C) devices to volume groups. If you are configuring storage devices for databases that use a "raw" partition, do not assign those devices to volume groups.

To assign the SCSI disk devices to volume groups and set the partition size:

- 1. At the AIX[®] command line prompt, type **smit** to start SMIT[®]. This brings up the System Management panel. *Note:* If SMIT[®] is not installed, please refer to the IBM[®] AIX[®] user guide for instructions on assigning new devices to volume groups using AIX[®] commands.
- 2. Select System Storage Management (Physical & Logical Storage) to bring up the System Storage Management panel.
- 3. Select Logical Volume Manager to bring up the Logical Volume Manager panel.
- 4. Select Volume Groups to bring up the Volume Group panel.
- 5. Select Add a Volume Group to bring up the Add a Volume Group panel.
- 6. The Add a Volume Group panel (see Figure 3.4) allows you to assign one or more devices (physical volumes) to a new volume group and set the physical partition size, as follows:
 - a) Place the cursor in the **VOLUME GROUP name** entry field. Enter the name of the new volume group (e.g., 9900vg0). A volume group can contain multiple hdisk devices, depending on the application.
 - b) Place the cursor in the **Physical partition SIZE in megabytes** field, and press the **F4** key. When the size menu appears, select the correct partition size for the device(s).
 - c) Place the cursor in the **PHYSICAL VOLUME names** entry field. Enter the device file name(s) for the desired device(s) (e.g., hdisk1), or press **F4** and select the device file name(s) from the list.
 - d) Place the cursor in the Activate volume group AUTOMATICALLY entry field, and enter yes to activate the volume group automatically at system restart.
 Note: If you are using HACMP, enter no.
- 7. After selecting the volume group, partition size, and physical volume(s) on the Add a Volume Group panel, press the **Enter** key.
- 8. When the confirmation panel opens, select **Yes** to assign the specified device(s) to the specified volume group with the specified partition size.
- The Command Status panel now opens. To ensure that the devices have been assigned to a volume group, wait for OK to appear on the Command Status line. To continue creating volume groups, press F3 until the Add a Volume Group panel appears.
- 10. Repeat steps (2) through (9) until all new disk devices are assigned to a volume group.

	Add a Volume Group				
Type or selec	t values in entry fi	elds.			
Press Enter A	FTER making all desi	red changes.			
		[Entry Fields]			
VOLUME GROU	P name	[9900vg0]	← Enter volume group.		
Physical pa	rtition SIZE in mega	bytes 4	← Enter partition size.		
PHYSICAL VO	LUME names	[hdisk1]	\leftarrow Enter device file name(s).		
Activate vo	lume group AUTOMATIC	ALLY yes	← Enter no for HACMP.		
at system	ı restart				
Volume Grou	IP MAJOR NUMBER	[]			
*Create VG C	oncurrent Capable?				
*Auto-varyon	in Concurrent Mode?				
F1=Help	F2=Refresh	F3=Cancel	F4=List		
F5=Reset	F6=Command	F7=Edit	F8=Image		
F9=Shell	F10=Exit	Enter=Do			

* These lines are added in $AIX^{(8)}$ version 4.3.

Figure 3.4 Assigning Devices to Volume Groups and Setting the Partition Size

Table 3.3 Partition Sizes for Standard LUs

Device Type	Partition Size
OPEN-3	4
OPEN-9	8
OPEN-E	16
OPEN-L	64

Table 3.4 Partition Sizes for VLL LUSE Devices

Device Type	LU Size (MB)	Partition Size (MB)
OPEN-x*n VLL	35-1800	2
	1801-2300	4
	2301-7000	8
	7001-16200	16
	13201-32400	32
	32401-64800	64
	64801-126000	128
	126001 and higher	256

Device Type	LUSE Configuration	Partition Size (MB)
OPEN-3	OPEN-3	4
	OPEN-3*2-OPEN-3*3	8
	OPEN-3*4-OPEN-3*6	16
	OPEN-3*7-OPEN-3*13	32
	OPEN-3*14-OPEN-3*27	64
	OPEN-3*28-OPEN-3*36	128
OPEN-9	OPEN-9	8
	OPEN-9*2	16
	OPEN-9*3-OPEN-9*4	32
	OPEN-9*5-OPEN-9*9	64
	OPEN-9*10-OPEN-9*18	128
	OPEN-9*19-OPEN-9*36	256
OPEN-E	OPEN-E	16
	OPEN-E*2	32
	OPEN-E*3,OPEN-E*4	64
	OPEN-E*5-OPEN-E*9	128
	OPEN-E*10-OPEN-E*18	256
OPEN-L	OPEN-L	64
	OPEN-L*2-OPEN-L*3	128
	OPEN-L*4-OPEN-L*7	256

Table 3.5 Partition Sizes for LUSE Devices

3.3 Creating, Mounting, and Verifying the File Systems

After you have assigned the SCSI disk devices to volume groups and set the partition sizes, you can create the file systems.

Note: Do not create file systems for the HRX devices. If you are configuring storage devices for databases that use a "raw" partition, you will create a logical volume only.

3.3.1 Creating the File System

- 1. At the AIX[®] command line prompt, enter **smit** to start SMIT[®]. This brings up the System Management panel. *Note:* If SMIT[®] is not installed, please refer to the IBM[®] AIX[®] user guide for instructions on creating file systems using AIX[®] commands.
- 2. Select System Storage Management (Physical & Logical Storage) to bring up the System Storage panel.
- 3. Select File Systems to bring up the File System panel.
- 4. Select Add/Change/Show/Delete File Systems to bring up the Add/Change panel.
- 5. Select Journaled File Systems to bring up the Journaled File System panel.
- 6. Select Add a Standard Journaled File System to bring up the Volume Group Name panel.
- 7. Move the cursor to the selected volume group, and press the Enter key.
- 8. Select the desired value, and then press the **Enter** key to bring up the Add a Journaled File System panel (see Figure 3.5).
- 9. Place the cursor in the SIZE of file system field, and enter the desired file system size (see Table 3.6).
- Place the cursor in the Mount Point field, and enter the desired mount point name (e.g., /9900_VG00). Please record the mount point name and file system size. You will be asked to input this information again.
- 11. Place the cursor in the **Mount AUTOMATICALLY** field. Enter **yes** to auto-mount the file systems. **Note**: If you are using HACMP, do not set the file systems to auto-mount.
- 12. Place the cursor in the **Number of bytes per inode** field, and enter the correct value for the selected device (see Tables 3.7-3.9).
- 13. Make sure that the file system size, mount point name, auto-mount options, and number of bytes per inode are correct, and press the Enter key to create the Journaled File System.
- 14. The Command Status panel now appears. To make sure that the Journaled File System has been created, wait for **OK** to appear on the Command Status line (see Figure 3.6).
- 15. Repeat steps (2) through (14) for each Journaled File System that you want to create. To continue creating Journaled File Systems press the **F3** key until you return to the Add a Journaled File System panel.
- 16. To exit SMIT[®], press the **F10** key.

Add a Journaled File System			
Type or select values in entry fields.			
Press Enter AFTER making all desired ch	nanges.		
	[Entry Fields]		
Volume group name	9900vg0		
SIZE of file system (in 512-byte bloc	cks) [4792320]	← See Table 3.6.	
MOUNT POINT	[/9900VG00]	← Enter mount point name.	
Mount AUTOMATICALLY at system restart	? yes	← Enter no for HACMP.	
PERMISSIONS	read/write		
Mount OPTIONS	[]		
Start Disk Accounting?	no		
Fragment Size (bytes)	4096		
Number of bytes per inode	4096	← See Tables 3.7-3.9.	
Compression algorithm	no		
*Allocation Group Size (Mbytes)			
F1=Help F2=Refresh	F3=Cancel	F4=List	
F5=Reset F6=Command	F7=Edit	F8=Image	
F9=Shell F10=Exit	Enter=Do		

* This line is added in AIX[®] version 4.3.

Figure 3.5 Adding a Journaled File System Using SMIT®

COMMAND STATUS Command : OK stdout : yes stderr : no Before command completion, additional instructions may appear below. Based on the parameters chosen, the new /9900_VG00 JFS file system is limited to a maximum size of 134217728 (512 byte blocks) New Filesystems size is 4792320 ← 4792320 is displayed for OPEN-3. F1=Help F2=Refresh F3=Cancel F6=Command /=Find F8=Image F9=Shell F10=Exit n=Find Next

Figure 3.6 Verifying Creation of Journaled File System

Table 3.6	Journaled	File System Size
-----------	-----------	------------------

Device Type		Capacity (in 512-byte blocks)	Maximum File System Size <i>(See Note 1)</i> (in 512-byte blocks)
Standard LU	OPEN-3	4806720	4792320
	OPEN-9	14423040	14401536
	OPEN-E	28452960	28409856
	OPEN-L	71192160	71041024
	OPEN-x*n	Refer to Table 1.1.	See Note 2.
LUSE Device	OPEN-x*n VLL	Refer to Table 1.1.	See Note 2.
VLL LUSE Device			

Note 1: When determining SIZE of File System at Add a Journaled File System, note that IBM[®] AIX[®] already uses an unspecified amount of disk space. You must determine the remaining size available for physical partitions.

Note 2: Calculate the file system size for these devices as follows:

- 1. Display the number of free physical partitions (FREE PPs) and physical partition size (PP SIZE) using the **lsvg** command (see Figure 3.7).
- 2. Calculate the maximum size of the file system as follows: (FREE PPs 1) \times (PP SIZE) \times 2048

Example for OPEN-3*20 LUSE device shown in Figure 3.7: The maximum file system size is: $(733 - 1) \times (64) \times 2048 = 95944704$

# lsvg 9900vg0			
VOLUMEGROUP:	9900vg0	VG IDENTIFIER:	0083665612e98521
VG STATE:	active	PP SIZE:	64 megabyte(s)
VG PERMISSION:	read/write	TOTAL PPs:	733 (46912 megabaytes)
MAX LVs:	256	FREE PPs:	733 (46912 megabytes)
LVs:	0	USED PPS:	0 (0 megabytes)
OPEN LVs:	0	QUORUM:	2
TOTAL PVs:	1	VG DESCRIPTORS:	2
STALE PVs;	0	STALE PPs	0
ACTIVE PVs 1		AUTO ON: ye	s
Concurrent:	Non-Capable	Auto-Concurrent:	Disabled
VG Mode:	Non-Concurrent		

Figure 3.7 Determining the Maximum File System Size

Device Type	LU Product Name	Number of Bytes per inode
OPEN-3	OPEN-3, OPEN-3*2-OPEN-3*28	4096
	OPEN-3*29-OPEN-3*36	8192
OPEN-9	OPEN-9, OPEN-9*2-OPEN-9*9	4096
	OPEN-9*10-OPEN-9*18	8192
	OPEN-9*19-OPEN-9*36	16384
OPEN-E	OPEN-E, OPEN-E*2-OPEN-E*4	4096
	OPEN-E*5-OPEN-E*9	8192
	OPEN-E*10-OPEN-E*18	16384
OPEN-L	OPEN-L	4096
	OPEN-L*2-OPEN-L*3	8192
	OPEN-L*4-OPEN-L*7	16384

Table 3.7 Number of bytes per inode for LUSE devices

Table 3.8 Number of bytes per inode for VLL

Device Type	LU Product Name	Number of Bytes per inode
OPEN-x VLL	OPEN-3 VLL, OPEN-9 VLL, OPEN-E VLL	4096

Table 3.9 Number of bytes per inode for VLL LUSE

Device Type	LU size in Megabytes	Number of Bytes per inode
OPEN-x*n VLL	35-64800	4096
	64801-126000	8192
	126001 and higher	16384

3.3.2 Mounting and Verifying the File Systems

After you have created the Journaled File Systems, you can mount the file systems and verify that the file systems were created correctly and are functioning properly.

To mount and verify the file systems:

- 1. At the AIX[®] command line prompt, enter: **mount < mount_point_name >** (e.g. mount/9900_VG00).
- 2. Repeat step (1) for each new file system.
- 3. Verify the size of the file systems you have created using the df command.

Note: The file system capacity is listed in 512-byte blocks by default. To list capacity in 1024-byte blocks, use the **df** -**k** command.

- 4. Verify that the new devices and file systems are fully operational by performing some basic operations (e.g., file creation, copying, deletion) on each device (see Figure 3.8).
- 5. At the next system restart, verify that the file systems have successfully auto-mounted by using the **mount** or **df** command to display all mounted file systems (see Figure 3.9). Any file systems that were not auto-mounted can be set to auto-mount using SMIT[®].
- 6. Change a Journaled File System panel. *Note:* If you are using HACMP, do not set the file systems to auto-mount.

# cd /9900VG00 # cp /smit.log /9900VG00/smit.log.back1 # ls -1 9900VG00	 ← Go to mount point. ← Copy file. ← Verify file copy.
-rw-rw-rw- 1 root system 375982 Nov 30 17:25 smit.log.back1	
# cp smit.log.back1 smit.log.back2	← Copy file again.
# ls -1	← Verify copy again.
-rw-rw-rw- 1 root system 375982 Nov 30 17:25 smit.log.back1	
-rw-rw-rw- 1 root system 375982 Nov 30 17:28 smit.log.back2	
# rm smit.log.back1	← Remove test file.
# rm smit.log.back2	\leftarrow Remove test file.

Figure 3.8 Verifying the Auto-Mounted File Systems

# df						\leftarrow List	mounted file systems.
File system	512-blocks	free	%Used	Iused	%Iused	Mounted on	
/dev/hd4	8192	3176	61%	652	31%	/	
/dev/hd2	1024000	551448	46%	6997	5%	/usr	
/dev/hd9var	8192	5512	32%	66	6%	/var	
/dev/hd3	24576	11608	52%	38	0%	/tmp	
/dev/hd1	8192	7840	4%	17	1%	/home	
/dev/lv00	4792320	4602128	4%	16	1%	/9900VG00	← OPEN-3 device.
/dev/lv01	4792320	4602128	4%	16	1%	/9900VG01	← OPEN-3 device.
/dev/lv02	14401536	13949392	4%	16	18	/9900VG02	← OPEN-9 device.

27

Chapter 4 Middleware and SNMP Configuration

The 9900V subsystem supports industry-standard products and functions that provide host and/or application failover, I/O path failover, and logical volume management (LVM). For the AIX[®] environment, the 9900V subsystem currently supports the following products and functions

- HACMP for host failover (see section 4.1).
- Hitachi Dynamic Link Manager[™] for path failover (see section 4.2).

Please contact your Hitachi Data Systems representative for the latest host and path failover information.

The 9900V subsystem also supports the industry-standard simple network management protocol agent (SNMP) for remote subsystem management from the UNIX[®]/PC server host (see section 4.3). SNMP is used to transport management information between the 9900V subsystem and the SNMP manager on the host. The SNMP agent for the 9900V subsystem sends status information to the host(s) either when the host requests such information or when a significant event occurs.

Note: The user is responsible for configuring the failover and SNMP management software on the UNIX[®]/PC server host. For assistance with failover and/or SNMP configuration on the host, please refer to the user documentation, or contact the vendor's technical support.

4.1 Host Failover

The 9900V subsystem supports the High Availability Multi-Cluster Processing (HACMP) host failover product for the IBM[®] AIX[®] operating system. The HACMP products are maintained by Availant^M.

The user must make sure to configure the HACMP software and any other middleware products (e.g., Tuxedo) as needed to recognize and operate with the newly attached 9900V devices. For assistance with HACMP operations, please refer to the HACMP user documentation, or contact Availant[™] technical support. For assistance with specific configuration issues related to the 9900V subsystem, please contact the Hitachi Data Systems Support Center (see section 5.2).

Note: HACMP does not provide a complete disaster recovery or backup solution, and is not a replacement for standard disaster recovery planning and backup/recovery.

4.2 Path Failover

The Hitachi 9900V subsystem supports Hitachi Dynamic Link Manager^M for the IBM[®] AIX[®] operating system. For further information, please see *Hitachi Dynamic Link Manager^M* for *AIX*[®] (MK-92DLM111).

29

4.3 SNMP Remote Subsystem Management

SNMP (Simple Network Management Protocol Agent) is a part of the TCP/IP protocol suite that supports maintenance functions for storage and communication devices. The 9900V subsystem utilizes SNMP to transfer status and management commands to the UNIX[®]/PC server host via the 9900V SVP (see Figure 4.1). When the SNMP manager requests status information or when a service information message (SIM) occurs, the SNMP agent on the 9900V SVP notifies the SNMP manager on the UNIX[®]/PC server host. Notification of 9900V error conditions is made in real time, providing UNIX[®] and PC server users with the same level of monitoring and support available to S/390[®] mainframe users. The SIM reporting via SNMP enables the user to monitor the 9900V subsystem from the UNIX[®]/PC server host.

When a SIM occurs, the 9900V SNMP agent initiates trap operations, which alert the SNMP manager of the SIM condition. The SNMP manager receives the SIM traps from the SNMP agent, and can request information from the SNMP agent at any time.

Note: The user is responsible for configuring the SNMP manager on the UNIX[®]/PC server host. For assistance with SNMP manager configuration on the UNIX[®]/PC server host, please refer to the user documentation, or contact the vendor's technical support.

Figure 4.1 9900V SNMP Environment

Chapter 5 Troubleshooting

5.1 Troubleshooting

For troubleshooting information on the 9900V subsystem, please refer to the *Hitachi Freedom Storage*[™] 9900V User and Reference Guide (MK-92RD100). Table 5.1 lists potential error conditions during 9900V IBM[®] AIX[®] configuration and provides instructions for resolving each condition. If you are unable to resolve an error condition, please ask your Hitachi Data Systems Customer Service representative for help, or call the Hitachi Data Systems Support Center for assistance.

Error Condition	Recommended Action
The logical devices are not recognized by the system.	Make sure that the READY indicator lights on the 9900V subsystem are ON. Run cfgmgr to recheck the fibre channel for new devices. Make sure that LUSE devices are not intermixed with normal LUs or with HRX devices on the same fibre channel port. Make sure that the LUNs are configured properly for each TID.
The file system is not mounted after rebooting.	Make sure the system was restarted properly. Make sure that the values listed under Journaled File System are correct.

5.2 Calling the Hitachi Data Systems Technical Support Center

If you need to call the Hitachi Data Systems Technical Support Center, make sure to provide as much information about the problem as possible. Include the circumstances surrounding the error or failure, the exact content of any messages displayed and the severity levels and reference codes of the R-SIMs on the R-SIM panel. The worldwide Hitachi Data Systems Technical Support Centers are:

- Hitachi Data Systems North America/Latin America San Diego, California, USA 1-800-348-4357
- Hitachi Data Systems Europe Contact Hitachi Data Systems Local Support
- Hitachi Data Systems Asia Pacific North Ryde, Australia 011-61-2-9325-3300

Appendix A Acronyms and Abbreviations

CruiseControl	CruiseControl performs automatic relocation of volumes to optimize
CU	Control Unit. The 9900V subsystem supports a maximum of 16 logical control unit (CU) images, numbered sequentially from 0 to F. Each CU image controls up to 256 LDEVs
Custom Access	A feature that allows a non-administrator to be assigned update access to one or more of the restricted functions.
DASD DKC	Direct-Access Storage Device Disk Controller. The 9900V disk controller provides up to sixteen logical control unit (CU) images and supports 3990-6, 3990-6E, and 2105-F20 disk controller emulation
DKU	Disk Array Unit. The 9900V subsystem has up to six disk array frames containing the storage components (disk drive arrays) of the subsystem.
ESCON®	Enterprise System Connection
Export File	The Export File function allows you to export data (e.g., monitoring data used by Performance Monitor or Hitachi TrueCopy) to data files.
FD FD Dump Tool	floppy disk This function downloads the 9900V configuration information onto a floppy diskette or a hard disk drive, and is generally used for troubleshooting purposes.
FICON™ FlashAccess	Fibre Connection FlashAccess (Dynamic Cache Residence) enables you to store specific high- usage data directly in cache memory to provide virtually immediate data availability.
GB	gigabyte(s)
Gb	gigabit
Gb/s	gigabits per second
(Hi-Star™)	Hierarchical Star Network architecture improves the total performance of internal data transfer by using high-speed crossbar switches.
HMBR	Hitachi Multiplatform Backup/Restore
Java™ applet program	The Web Client Java ^{M} applet program runs on a web browser. When a user accesses and logs on to the desired SVP, the Web Client Java ^{M} applet is downloaded from the SVP. The Web Client Java ^{M} applet program runs on a web browser.
JVM™	Java Virtual Machine™ is the Web Client Java™ applet program that is installed in each SVP and runs using web browsers to provide a user-friendly interface for the 9900V functions.
kB	kilobyte(s)

LAN	local-area network
LBA	logical block address
LDEV	logical device. An LDEV used by mainframe hosts can be called a device, logical volume image (LVI) or a volume. An LDEV used by open-system
LU	An LDEV used by open-system hosts is called a logical unit (LU). Open- system fibre interfaces access LUs that are mapped to one or more LDEVs.
LUN	logical unit number is an identifying number for an LU.
LUN Manager	LUN Manager enables you to configure the 9900V fibre-channel ports for operational environments, and restrict host access to LUs.
LUSE	LUN Expansion. This function allows you to concatenate two or more volumes into a larger volume.
LVI	Logical Volume Image (also called device emulation)
MB MIB	megabyte(s) message information block
MID	incisage information block
Open Volume Management	A suite of options that includes Virtual LVI/LUN and LUSE (LUN Expansion). Virtual LVI/LUN divides a logical volume for open-system into two or more volumes. LUN Expansion allows you to concatenate two or more volumes into a larger volume.
Parity group	A set of hard disk drives that have the same capacity and are treated as one group. A parity group contains both user data and parity information, which allows the user data to be accessed in the event that one or more of the drives within the group are not available.
Performance Manager	An option that includes Performance Monitor, CruiseControl, and Priority Access. The Performance Monitor option monitors subsystem and volume activity, and the Hitachi CruiseControl option performs automatic relocation of volumes to optimize performance, and Priority Access***
RMI™	Remote Method Invocation. RMI^{M} is a remote procedure call, which allows Java ^M objects stored in the network to be run remotely.
R-SIM	remote service information message (generated by the 9900V when it detects an error or service requirement).
SIM	service information message (generated by a subsystem when it detects an error or service requirement).
ShadowImage	A program product that allows you to maintain subsystem-internal copies of all user data for purposes such as data backup and duplication.
SNMP	simple network management protocol (part of the TCP/IP protocol suite)
SSID	storage subsystem ID. The 9900V is configured with one SSID for each 64 devices, and up to four SSIDs for each CU image.
SVP	Service Processor (this is the notebook computer that is inside the RAID450).
TCP/IP	transmission control protocol/internet protocol
TID	target ID
Trap	An SNMP agent initiates trap operations when R-SIMs occur, in order to send the R-SIMs to the SNMP manager (see Figure 4.1). An SNMP agent can be configured to deliver traps to more than one SNMP manager.

TrueCopy	TrueCopy is a program product that allows you to perform host-free remote copy operations between 9900V subsystems in different locations for data backup and disaster recovery purposes.
UCB	unit control block
User account list	The user account list includes user information such as user ID, password, and write permission for each 9900V option.
VLL	Virtual LVI/ LUN is a program product that enables you to configure custom-size logical device images and logical units, which are smaller than standard-size devices.
Volser	volume serial number (mainframe volume identifier, not related to the LDEV ID)

Appendix B SCSI TID Maps for Fibre-Channel Adapters

When an arbitrated loop (AL) is established or re-established, the port addresses are assigned automatically to prevent duplicate TIDs. When using the SCSI over fibre-channel protocol (FCP) there is no longer a need for target IDs in the traditional sense. SCSI is a busoriented protocol requiring each device to have a unique address since all commands go to all devices. For fibre channel, the AL-PA is used instead of the TID to direct packets to the desired destination. Unlike traditional SCSI, once control of the loop is acquired, a point-to-point connection is established from initiator to target. To enable transparent use of FCP, the AIX[®] operating system "maps" a TID to each AL-PA.

Tables B.1 and B.2 identify the fixed mappings between the bus/TID/LUN addresses assigned by AIX[®] and the fibre-channelnative addresses (AL_PA/SEL_ID) for fibre-channeladapters. There are two potential mappings depending on the value of the ScanDown registry parameter:

- For ScanDown = 0 (default) see Table B.1.
- For ScanDown = 1 see Table B.2.

Note: When 9900V devices and other types of devices are connected in the same arbitrated loop, the mappings defined in Tables B.1 and B.2 cannot be guaranteed.

Bus #	TID	LUN	AL_PA	SEL_ID
0	0-31	0-7	NONE	NONE
1	0	0-7	0x01	0x7D
	1	0-7	0x02	0x7C
	2	0-7	0x04	0x7B
	3	0-7	0x08	0x7A
	4	0-7	0x0F	0x79
	5	0-7	0x10	0x78
	6	0-7	0x17	0x77
	7	0-7	0x18	0x76
	8	0-7	0x1B	0x75
	9	0-7	0x1D	0x74
	10	0-7	0x1E	0x73
	11	0-7	0x1F	0x72
	12	0-7	0x23	0x71
	13	0-7	0x25	0x70
	14	0-7	0x26	0x6F
	15	0-7	0x27	0x6E
	16	0-7	0x29	0x6D
	17	0-7	0x2A	0x6C
	18	0-7	0x2B	0x6B
	19	0-7	0x2C	0x6A
	20	0-7	0x2D	0x69
	21	0-7	0x2E	0x68
	22	0-7	0x31	0x67
	23	0-7	0x32	0x66
	24	0-7	0x33	0x65
	25	0-7	0x34	0x64
	26	0-7	0x35	0x63
	27	0-7	0x36	0x62
	28	0-7	0x39	0x61
	29	0-7	0x3A	0x60
	30	0-7	0x3C	0x5F
	31	0-7	NONE	NONE

Table B.1	SCSI	TID Map	(ScanDown=0)
-----------	------	---------	--------------

Bus #	TID	LUN	AL_PA	SEL_ID
2	0	0-7	0x43	0x5E
	1	0-7	0x45	0x5D
	2	0-7	0x46	0x5C
	3	0-7	0x47	0x5B
	4	0-7	0x49	0x5A
	5	0-7	0x4A	0x59
	6	0-7	0x4B	0x58
	7	0-7	0x4C	0x57
	8	0-7	0x4D	0x56
	9	0-7	0x4E	0x55
	10	0-7	0x51	0x54
	11	0-7	0x52	0x53
	12	0-7	0x53	0x52
	13	0-7	0x54	0x51
	14	0-7	0x55	0x50
	15	0-7	0x56	0x4F
	16	0-7	0x59	0x4E
	17	0-7	0x5A	0x4D
	18	0-7	0x5C	0x4C
	19	0-7	0x63	0x4B
	20	0-7	0x65	0x4A
	21	0-7	0x66	0x49
	22	0-7	0x67	0x48
	23	0-7	0x69	0x47
	24	0-7	0x6A	0x46
	25	0-7	0x6B	0x45
	26	0-7	0x6C	0x44
	27	0-7	0x6D	0x43
	28	0-7	0x6E	0x42
	29	0-7	0x71	0x41
	30	0-7	0x72	0x40
	31	0-7	NONE	NONE

Bus #	TID	LUN	AL_PA	SEL_ID
3	0	0-7	0x73	0x3F
	1	0-7	0x74	0x3E
	2	0-7	0x75	0x3D
	3	0-7	0x76	0x3C
	4	0-7	0x79	0x3B
	5	0-7	0x7A	0x3A
	6	0-7	0x7C	0x39
	7	0-7	0x80	0x38
	8	0-7	0x81	0x37
	9	0-7	0x82	0x36
	10	0-7	0x84	0x35
	11	0-7	0x88	0x34
	12	0-7	0x8F	0x33
	13	0-7	0x90	0x32
	14	0-7	0x97	0x31
	15	0-7	0x98	0x30
	16	0-7	0x9B	0x2F
	17	0-7	0x9D	0x2E
	18	0-7	0x9E	0x2D
	19	0-7	0x9F	0x2C
	20	0-7	0xA3	0x2B
	21	0-7	0xA5	0x2A
	22	0-7	0xA6	0x29
	23	0-7	0xA7	0x28
	24	0-7	0xA9	0x27
	25	0-7	0xAA	0x26
	26	0-7	0xAB	0x25
	27	0-7	0xAC	0x24
	28	0-7	0xAD	0x23
	29	0-7	0xAE	0x22
	30	0-7	0xB1	0x21
	31	0-7	NONE	NONE

Bus #	TID	LUN	AL_PA	SEL_ID
4	0	0-7	0xB2	0x20
	1	0-7	0xB3	0x1F
	2	0-7	0xB4	0x1E
	3	0-7	0xB5	0x1D
	4	0-7	0xB6	0x1C
	5	0-7	0xB9	0x1B
	6	0-7	0xBA	0x1A
	7	0-7	0xBC	0x19
	8	0-7	0xC3	0x18
	9	0-7	0xC5	0x17
	10	0-7	0xC6	0x16
	11	0-7	0xC7	0x15
	12	0-7	0xC9	0x14
	13	0-7	0xCA	0x13
	14	0-7	0xCB	0x12
	15	0-7	0xCC	0x11
	16	0-7	0xCD	0x10
	17	0-7	0xCE	0x0F
	18	0-7	0xD1	0x0E
	19	0-7	0xD2	0x0D
	20	0-7	0xD3	0x0C
	21	0-7	0xD4	0x0B
	22	0-7	0xD5	0x0A
	23	0-7	0xD6	0x09
	24	0-7	0xD9	0x08
	25	0-7	0xDA	0x07
	26	0-7	0xDC	0x06
	27	0-7	0xE0	0x05
	28	0-7	0xE1	0x04
	29	0-7	0xE2	0x03
	30	0-7	0xE4	0x02
	31	0-7	NONE	NONE

Bus #	TID	LUN	AL_PA	SEL_ID
5	0	0-7	0xE8	0x01
	1	0-7	0xEF	0x00
	2	0-7	NONE	NONE
	3	0-7	NONE	NONE
	4	0-7	NONE	NONE
	5	0-7	NONE	NONE
	6	0-7	NONE	NONE
	7	0-7	NONE	NONE
	8	0-7	NONE	NONE
	9	0-7	NONE	NONE
	10	0-7	NONE	NONE
	11	0-7	NONE	NONE
	12	0-7	NONE	NONE
	13	0-7	NONE	NONE
	14	0-7	NONE	NONE
	15	0-7	NONE	NONE
	16	0-7	NONE	NONE
	17	0-7	NONE	NONE
	18	0-7	NONE	NONE
	19	0-7	NONE	NONE
	20	0-7	NONE	NONE
	21	0-7	NONE	NONE
	22	0-7	NONE	NONE
	23	0-7	NONE	NONE
	24	0-7	NONE	NONE
	25	0-7	NONE	NONE
	26	0-7	NONE	NONE
	27	0-7	NONE	NONE
	28	0-7	NONE	NONE
	29	0-7	NONE	NONE
	30	0-7	NONE	NONE
	31	0-7	NONE	NONE

Bus #	TID	LUN	AL_PA	SEL_ID
0	0-31	0-7	NONE	NONE
1	0	0-7	0xEF	0x00
	1	0-7	0xE8	0x01
	2	0-7	0xE4	0x02
	3	0-7	0xE2	0x03
	4	0-7	0xE1	0x04
	5	0-7	0xE0	0x05
	6	0-7	0xDC	0x06
	7	0-7	0xDA	0x07
	8	0-7	0xD9	0x08
	9	0-7	0xD6	0x09
	10	0-7	0xD5	0x0A
	11	0-7	0xD4	0x0B
	12	0-7	0xD3	0x0C
	13	0-7	0xD2	0x0D
	14	0-7	0xD1	0x0E
	15	0-7	0xCE	0x0F
	16	0-7	0xCD	0x10
	17	0-7	0xCC	0x11
	18	0-7	0xCB	0x12
	19	0-7	0xCA	0x13
	20	0-7	0xC9	0x14
	21	0-7	0xC7	0x15
	22	0-7	0xC6	0x16
	23	0-7	0xC5	0x17
	24	0-7	0xC3	0x18
	25	0-7	0xBC	0x19
	26	0-7	0xBA	0x1A
	27	0-7	0xB9	0x1B
	28	0-7	0xB6	0x1C
	29	0-7	0xB5	0x1D
	30	0-7	0xB4	0x1E
	31	0-7	NONE	NONE

Bus #	TID	LUN	AL_PA	SEL_ID
2	0	0-7	0xB3	0x1F
	1	0-7	0xB2	0x20
	2	0-7	0xB1	0x21
	3	0-7	0xAE	0x22
	4	0-7	0xAD	0x23
	5	0-7	0xAC	0x24
	6	0-7	0xAB	0x25
	7	0-7	0xAA	0x26
	8	0-7	0xA9	0x27
	9	0-7	0xA7	0x28
	10	0-7	0xA6	0x29
	11	0-7	0xA5	0x2A
	12	0-7	0xA3	0x2B
	13	0-7	0x9F	0x2C
	14	0-7	0x9E	0x2D
	15	0-7	0x9D	0x2E
	16	0-7	0x9B	0x2F
	17	0-7	0x98	0x30
	18	0-7	0x97	0x31
	19	0-7	0x90	0x32
	20	0-7	0x8F	0x33
	21	0-7	0x88	0x34
	22	0-7	0x84	0x35
	23	0-7	0x82	0x36
	24	0-7	0x81	0x37
	25	0-7	0x80	0x38
	26	0-7	0x7C	0x39
	27	0-7	0x7A	0x3A
	28	0-7	0x79	0x3B
	29	0-7	0x76	0x3C
	30	0-7	0x75	0x3D
	31	0-7	NONE	NONE

Table B.2 SCSI TID Map (ScanDown=1)

Bus #	TID	LUN	AL_PA	SEL_ID
3	0	0-7	0x74	0x3E
	1	0-7	0x73	0x3F
	2	0-7	0x72	0x40
	3	0-7	0x71	0x41
	4	0-7	0x6E	0x42
	5	0-7	0x6D	0x43
	6	0-7	0x6C	0x44
	7	0-7	0x6B	0x45
	8	0-7	0x6A	0x46
	9	0-7	0x69	0x47
	10	0-7	0x67	0x48
	11	0-7	0x66	0x49
	12	0-7	0x65	0x4A
	13	0-7	0x63	0x4B
	14	0-7	0x5C	0x4C
	15	0-7	0x5A	0x4D
	16	0-7	0x59	0x4E
	17	0-7	0x56	0x4F
	18	0-7	0x55	0x50
	19	0-7	0x54	0x51
	20	0-7	0x53	0x52
	21	0-7	0x52	0x53
	22	0-7	0x51	0x54
	23	0-7	0x4E	0x55
	24	0-7	0x4D	0x56
	25	0-7	0x4C	0x57
	26	0-7	0x4B	0x58
	27	0-7	0x4A	0x59
	28	0-7	0x49	0x5A
	29	0-7	0x47	0x5B
	30	0-7	0x46	0x5C
	31	0-7	NONE	NONE

Bus #	TID	LUN	AL_PA	SEL_ID
4	0	0-7	0x45	0x5D
	1	0-7	0x43	0x5E
	2	0-7	0x3C	0x5F
	3	0-7	0x3A	0x60
	4	0-7	0x39	0x61
	5	0-7	0x36	0x62
	6	0-7	0x35	0x63
	7	0-7	0x34	0x64
	8	0-7	0x33	0x65
	9	0-7	0x32	0x66
	10	0-7	0x31	0x67
	11	0-7	0x2E	0x68
	12	0-7	0x2D	0x69
	13	0-7	0x2C	0x6A
	14	0-7	0x2B	0x6B
	15	0-7	0x2A	0x6C
	16	0-7	0x29	0x6D
	17	0-7	0x27	0x6E
	18	0-7	0x26	0x6F
	19	0-7	0x25	0x70
	20	0-7	0x23	0x71
	21	0-7	0x1F	0x72
	22	0-7	0x1E	0x73
	23	0-7	0x1D	0x74
	24	0-7	0x1B	0x75
	25	0-7	0x18	0x76
	26	0-7	0x17	0x77
	27	0-7	0x10	0x78
	28	0-7	0x0F	0x79
	29	0-7	0x08	0x7A
	30	0-7	0x04	0x7B
	31	0-7	NONE	NONE

Bus #	TID	LUN	AL_PA	SEL_ID
5	0	0-7	0x02	0x7C
	1	0-7	0x01	0x7D
	2	0-7	NONE	NONE
	3	0-7	NONE	NONE
	4	0-7	NONE	NONE
	5	0-7	NONE	NONE
	6	0-7	NONE	NONE
	7	0-7	NONE	NONE
	8	0-7	NONE	NONE
	9	0-7	NONE	NONE
	10	0-7	NONE	NONE
	11	0-7	NONE	NONE
	12	0-7	NONE	NONE
	13	0-7	NONE	NONE
	14	0-7	NONE	NONE
	15	0-7	NONE	NONE
	16	0-7	NONE	NONE
	17	0-7	NONE	NONE
	18	0-7	NONE	NONE
	19	0-7	NONE	NONE
	20	0-7	NONE	NONE
	21	0-7	NONE	NONE
	22	0-7	NONE	NONE
	23	0-7	NONE	NONE
	24	0-7	NONE	NONE
	25	0-7	NONE	NONE
	26	0-7	NONE	NONE
	27	0-7	NONE	NONE
	28	0-7	NONE	NONE
	29	0-7	NONE	NONE
	30	0-7	NONE	NONE
	31	0-7	NONE	NONE

Appendix C Online Installation and Deinstallation of Devices

After initial installation and configuration of the 9900V subsystem, additional devices can be installed or de-installed online without having to restart the system. After online installation, the device parameters for new volumes must be changed to match the LUs defined under the same fibre-channel port (refer to section 3.1).

Note: For additional instructions regarding online installation and deinstallation of LUs, please refer to the *Hitachi Freedom Storage*[™] 9900V LUN Manager User's Guide (MK-92RD105).

- 1. Log in to the IBM[®] system as **root**.
- 2. At the AIX[®] command line prompt, enter **smit** to start SMIT[®]. This brings up the System Management panel. *Note*: If SMIT[®] is not installed, please refer to the IBM[®] AIX[®] user guide for instructions on assigning new devices to volume groups using AIX[®] commands.
- 3. Select **Devices** to bring up the Devices panel.
- 4. Select Install/Configure Devices Added After IPL to bring up the Install/Configure Devices Added After IPL panel.
- 5. Select INPUT device/directory for software, and then press the Enter key. The AIX[®] system now scans the buses for new devices.
- 6. Verify new device recognition using the **lsdev -C -c disk** command as described in section 2.5. Make sure to record the device file names for the new devices.
- 7. Configure the new devices for AIX[®] operations as described in Chapters 3 and 4.

Index

9

9900V configuring the fibre-channel ports, 10 fibre topology settings (table), 10 hardware installation, 8 instructions for connecting, 12 LUN Manager installation, 8 overview, 1 port addressing, 10 prerequisites for connecting, 9 queue depth requirements, 16 queue type requirements, 16 r/w timeout requirements, 16 subsystem installation, 8

A

acronyms and abbreviations, 33 Add New Host Group panel illustration, 9 AL-PA values table, 11

С

configuration requirements, in general, 7 configuring new devices adding volume group (illustration), 20 changing device parameters, 16 SMIT[®] illustration, 17 creating the file system SMIT[®] illustration, 24 SMIT[®] instructions, 23 in general, 15 journaled file system size table, 25 journaled file system size (illustration), 25 mounting and verifying the file system illustration (1), 28 illustration (2), 28 instructions, 27 number of bytes per inode LUSE (table), 26 Virtual LVI/LUN (table), 26 VLL LUSE (table), 26 partition sizes LUSE (table), 22 standard (table), 21 VLL LUSE (table), 21 verifying device parameters

lsattr -E -1 hdiskx (illustration), 18 lscfg -vl hdisk1 (illustration), 18 verifying the file system illustration, 24 volume groups and partition sizes instructions, 19

D

device types definition OPEN-x, 2 OPEN-x VLL, 2 OPEN-x*n (LUSE), 2 OPEN-x*n VLL (VLL LUSE), 2 specifications (table), 4

Η

host failover, 29

I

installing the 9900Vsubsystem, 8

Ν

new device configuration adding volume group (illustration), 20 changing device parameters, 16 SMIT[®] illustration, 17 creating the file system SMIT[®] illustration, 24 SMIT[®] instructions, 23 in general, 15 journaled file system size table. 25 journaled file system size (illustration), 25 mounting and verifying the file system illustration (1), 28 illustration (2), 28 instructions, 27 number of bytes per inode LUSE (table), 26 Virtual LVI/LUN (table), 26 VLL LUSE (table), 26 partition sizes in general (table), 21 LUSE (table), 22 VLL LUSE configuration (table), 21 verifying device parameters lsattr -E -1 hdiskx (illustration), 18

lscfg -vl hdisk1 (illustration), 18 verifying the file system illustration, 24 volume groups and partition sizes instructions, 19 new device recognition verifying (illustration), 13 verifying (instructions), 13

0

overview of 9900V, 1 overview of AIX $^{\mbox{\tiny (B)}}$ configuration, 1

Ρ

path failover, 29 Port Mode panel (Port Tab) illustration, 11

S

sample device data table illustration, 14 SCSI TID map ScanDown=0 table, 38 ScanDown=1 table, 41 tables, 37-43 SNMP, 30 illustration, 30

Т

troubleshooting contacting technical support, 32 in general, 31

۷

verifying new device recognition illustration, 13 instructions, 13 volume usage for device categories table, 5