

# Hitachi Freedom Storage™ Lightning 9900™ V Series SGI™ IRIX® Configuration Guide

#### © 2002 Hitachi Data Systems Corporation, ALL RIGHTS RESERVED

*Notice:* No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or stored in a database or retrieval system for any purpose without the express written permission of Hitachi Data Systems Corporation.

Hitachi Data Systems reserves the right to make changes to this document at any time without notice and assumes no responsibility for its use. Hitachi Data Systems products and services can only be ordered under the terms and conditions of Hitachi Data Systems' applicable agreements. All of the features described in this document may not be currently available. Refer to the most recent product announcement or contact your local Hitachi Data Systems sales office for information on feature and product availability.

This document contains the most current information available at the time of publication. When new and/or revised information becomes available, this entire document will be updated and distributed to all registered users.

#### Trademarks

Hitachi Data Systems is a registered trademark and service mark of Hitachi, Ltd., and the Hitachi Data Systems design mark is a trademark and service mark of Hitachi, Ltd.

ExSA, Extended Serial Adapter, Hitachi Freedom Storage, and Lightning 9900 are trademarks of Hitachi Data Systems Corporation.

BROCADE, Fabric OS, and SilkWorm are registered trademarks or trademarks of Brocade Communications Systems, Inc.

ESCON, FICON, and S/390 are registered trademarks or trademarks of International Business Machines Corporation (IBM).

Challenge, CXFS, EFS, FailSafe, IRIS, IRIX, NFS, Octane, Onyx, Onyx2, Origin, SGI, Silicon Graphics, and XFS are registered trademarks or trademarks of Silicon Graphics, Inc.

UNIX is a registered trademark of X/Open Company Limited in the United States and other countries and is licensed exclusively through X/Open Company Limited.

All other brand or product names are or may be trademarks or service marks of and are used to identify products or services of their respective owners.

#### Notice of Export Controls

Export of technical data contained in this document may require an export license from the United States government and/or the government of Japan. Please contact the Hitachi Data Systems Legal Department for any export compliance questions.

#### **Document Revision Level**

| Revision     | Date       | Description     |
|--------------|------------|-----------------|
| MK-92RD125-0 | April 2002 | Initial Release |

#### Source Documents for this Revision

- Hitachi Lightning 9900<sup>™</sup> SGI<sup>™</sup> IRIX<sup>®</sup> Configuration Guide, MK-90RD24-5.
- MK-92RD125-P-1.doc (RSD review of this document).

#### **Referenced Documents**

- Hitachi Lightning 9900<sup>™</sup> V Series User and Reference Guide, MK-92RD100.
- Hitachi Lightning 9900™ V Series Remote Console Storage Navigator User's Guide, MK-92RD101.
- Hitachi Lightning 9900<sup>™</sup> V Series LUN Manager User's Guide, MK-92RD105.
- Hitachi Lightning 9900<sup>™</sup> V Series LUN Expansion (LUSE) and Virtual LVI/LUN User's Guide, MK-92RD104.

### Preface

The Hitachi Lightning  $9900^{\mathbb{M}}$  V Series SGI<sup> $\mathbb{M}$ </sup> IRIX<sup>®</sup> Configuration Guide describes and provides instructions for configuring the devices on the Lightning  $9900^{\mathbb{M}}$  V Series disk array subsystem for operation with the SGI<sup> $\mathbb{M}$ </sup> IRIX<sup>®</sup> operating system. This document assumes that:

- the user has a background in data processing and understands direct-access storage device subsystems and their basic functions,
- the user is familiar with the Hitachi Lightning 9900<sup>™</sup> V Series array subsystem,
- the user is familiar with the SGI<sup>™</sup> servers and the fibre-channel adapters, and
- the user is familiar with the SGI<sup>™</sup> IRIX<sup>®</sup> operating system and the UNIX<sup>®</sup> file system, system commands, and utilities.

*Note:* The term "9900V" refers to the entire Hitachi Lightning  $9900^{\mathbb{M}}$  V Series subsystem family, unless otherwise noted. Please refer to the *Hitachi Lightning*  $9900^{\mathbb{M}}$  V Series User and Reference Guide (MK-92RD100) for further information on the 9900V subsystem.

*Note:* For further information on the SGI<sup>m</sup> IRIX<sup>®</sup> operating system, please consult the IRIX<sup>®</sup> user documentation, or contact SGI<sup>m</sup> customer support services.

#### **Microcode Level**

This document revision applies to 9900V microcode versions 21-01-xx and higher.

### COMMENTS

Please send us your comments on this document: <u>doc.comments@hds.com</u>.

Make sure to include the document title, number, and revision. Please refer to specific page(s) and paragraph(s) whenever possible. (All comments become the property of Hitachi Data Systems Corporation.)

#### Thank you!

## Contents

| Chapter 1  | Overview of 9900V SGI™ IRIX <sup>®</sup> Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|            | 1.19900V SGI™ IRIX® Configuration11.2Hitachi Lightning 9900™ V Series Subsystem11.3Device Types and Configuration Procedures2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| Chapter 2  | Preparing for New Device Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|            | <ul> <li>2.1 Configuration Requirements</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| Chapter 3  | Configuring the New Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| Chapter 4  | 3.1       Verifying New Device Recognition       11         3.1.1       Device Files and WWNs       14         3.2       Partitioning the Disk Devices       15         3.3       Enabling Command Tag Queuing       18         3.4       Creating the File Systems       20         3.4.1       EFS™ File System       20         3.4.2       XFS™ File System       20         3.5       Creating the Mount Directories and Mounting the Devices       21         3.6       Verifying the File Systems       22         3.7       Setting the Auto-Mount Parameters       23         Failover and SNMP Configuration         4.1       Host/Application Failover       25 |  |  |  |  |  |  |  |  |  |  |
|            | 4.2 SNMP Remote Subsystem Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| Chapter 5  | Troubleshooting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|            | 5.1Troubleshooting275.2Calling the Support Center28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
| Appendix A | SCSI TID Map for Fibre-Channel Adapters 29-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| Appendix B | Online Device Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Acronyms a | nd Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |

## List of Figures

| Figure 2.1  | Setting the Host Mode                                             |
|-------------|-------------------------------------------------------------------|
| Figure 2.2  | Setting the Fibre-Channel Port Parameters                         |
| Figure 3.1  | Verifying New Device Recognition (without fabric)                 |
| Figure 3.2  | Verifying New Device Recognition (with fabric)                    |
| Figure 3.3  | Displaying the WWN (NodeName) on BROCADE Fabric Switch 14         |
| Figure 3.4  | Partitioning and Labeling the Disk Devices (without fabric)       |
| Figure 3.5  | Partitioning and Labeling a Device Connected via Fabric Switch 17 |
| Figure 3.6  | Verifying a Partition 17                                          |
| Figure 3.7  | Checking the I/O Response Time Using the Sar Command              |
| Figure 3.8  | Enabling Command Tag Queuing (CTQ) and Setting the Queue Depth 19 |
| Figure 3.9  | Verifying the New File Systems                                    |
| Figure 3.10 | Setting the Auto-Mount Parameters 23                              |
| Figure 4.1  | 9900V SNMP Environment                                            |
| Figure B.1  | Recognizing New Devices Installed Online                          |

## List of Tables

| Table 1.1              | 9900V Device Specifications 3                                                   |
|------------------------|---------------------------------------------------------------------------------|
| Table 2.1<br>Table 2.2 | Fibre Parameter Settings on the 9900V Remote Console PC8Available AL-PA Values9 |
| Table 3.1<br>Table 3.2 | Queue Depth Requirements for the 9900V Devices18Auto-Mount Parameters23         |
| Table 5.1              | Troubleshooting                                                                 |
| Table A.1              | Fibre Port Addressing 30-31                                                     |

## Chapter 1 Overview of 9900V SGI<sup>™</sup> IRIX<sup>®</sup> Configuration

#### 1.1 9900V SGI<sup>™</sup> IRIX<sup>®</sup> Configuration

This document describes the requirements and procedures for connecting the 9900V subsystem to an SGI<sup>M</sup> system and configuring the new 9900V devices for operation with the SGI<sup>M</sup> IRIX<sup>®</sup> operating system. The Hitachi Data Systems representative performs the physical installation of the 9900V subsystem. The user prepares for 9900V subsystem installation, and then configures the new 9900V devices with assistance as needed from the Hitachi Data Systems representative.

Configuration of the 9900V disk devices for SGI<sup>™</sup> IRIX<sup>®</sup> operations includes:

- Verifying new device recognition (see section 3.1),
- Partitioning the devices (see section 3.2),
- Enabling command tag queuing (CTQ) (see section 3.3),
- Creating the file systems (see section 3.4),
- Creating the mount directories and mounting the devices (see section 3.5),
- Verifying the file systems (see section 3.6), and
- Setting the auto-mount parameters (see section 3.7).

*Note on the term "SCSI disk":* The 9900V logical devices are defined to the host as SCSI disk devices, even though the interface is fibre-channel.

#### 1.2 Hitachi Lightning 9900™ V Series Subsystem

The Hitachi Lightning 9900<sup>™</sup> V Series RAID subsystem supports concurrent attachment to multiple UNIX<sup>®</sup>-based and PC-server platforms. Please contact your Hitachi Data Systems account team for the latest information on platform support. The 9900V subsystem provides continuous data availability, high-speed response, scaleable connectivity, and expandable capacity for PC server and open-system storage. The 9900V subsystem can operate with multihost applications and host clusters, and is designed to handle very large databases as well as data warehousing and data mining applications that store and retrieve terabytes of data.

The Lightning 9900<sup>TM</sup> V Series subsystem can be configured with fibre-channel, FICON<sup>TM</sup>, and/or Extended Serial Adapter<sup>TM</sup> (ExSA<sup>TM</sup>) ports (compatible with ESCON<sup>®</sup> protocol) to provide connectivity with S/390<sup>®</sup> mainframe hosts as well as open-system hosts. For further information on the 9900V subsystem, please refer to the *Hitachi Freedom Storage<sup>TM</sup> Lightning 9900<sup>TM</sup> V Series User and Reference Guide* (MK-92RD100), or contact your Hitachi Data Systems account team.

#### 1.3 Device Types and Configuration Procedures

The 9900V subsystem allows the following types of logical devices (also called volumes) to be installed and configured for operation with the SGI<sup>m</sup> IRIX<sup>®</sup> operating system. Table 1.1 lists the device specifications for the 9900V devices.

**OPEN-***x* **Devices.** The OPEN-*x* logical units (LUs) (e.g., OPEN-3, OPEN-9) are disk devices of predefined sizes. The 9900V subsystem currently supports OPEN-3, OPEN-9, OPEN-E, and OPEN-L devices. Please contact your Hitachi Data Systems account team for the latest information on supported LU types.

LUSE Devices (OPEN- $x^*n$ ). The LUSE devices are combined LUs which can be from 2 to 36 times larger than standard OPEN-x LUs. The LUN Expansion (LUSE) Remote Console software enables you to configure these custom-size devices. LUSE devices are designated as OPEN- $x^*n$ , where x is the LU type (e.g., OPEN- $9^*n$ ) and  $2 \le n \le 36$ . For example, a LUSE device created from ten OPEN-3 LUs would be designated as an OPEN- $3^*10$  disk device. This capability enables the host to combine logical devices and access the data stored on the 9900V subsystem using fewer LU numbers. For further information on the LUSE feature, please refer to the *Hitachi Lightning 9900<sup>TM</sup> V Series LUN Expansion and Virtual LVI/LUN User's Guide* (MK-92RD104).

VLL Devices (OPEN-x VLL). The VLL devices are custom-size LUs which are smaller than standard OPEN-x LUs. The Virtual LVI/LUN Remote Console software enables you to configure VLL devices by "slicing up" a single LU into several smaller LUs. You can choose the device size that best fits your application needs to improve your host access to frequently used files. For further information on the Virtual LVI/LUN feature, please refer to the *Hitachi Lightning 9900™ V Series LUN Expansion (LUSE) and Virtual LVI/LUN User's Guide* (MK-92RD104). *Note:* The product name for the OPEN-x VLL devices is OPEN-x-CVS (CVS stands for custom volume size).

VLL LUSE Devices (OPEN-x\*n VLL). The VLL LUSE devices combine Virtual LVI/LUN devices (instead of standard OPEN-x LUs) into LUSE devices. The Virtual LVI/LUN feature is used to create custom-size devices, and then the LUSE feature is used to combine (concatenate) these VLL devices. The user can combine from 2 to 36 VLL devices into one VLL LUSE device. For example, an OPEN-3 LUSE volume created from ten OPEN-3 VLL volumes would be designated as an OPEN-3\*10 VLL device (product name OPEN-3\*10-CVS).

Configuration of the 9900V disk devices for SGI<sup>™</sup> IRIX<sup>®</sup> operations includes:

- Verifying new device recognition (see section 3.1),
- Partitioning the devices (see section 3.2),
- Enabling command tag queuing (CTQ) (see section 3.3),
- Creating the file systems (see section 3.4),
- Creating the mount directories and mounting the devices (see section 3.5),
- Verifying the file systems (see section 3.6), and
- Setting the auto-mount parameters (see section 3.7).

| Device Type<br>(Note 1) | Category<br>(Note 2) | Vendor<br>Name | Product Name<br>(Note 3) | # of Blocks<br>(512-byte blk) | Sector Size<br>(bytes) | # of Data<br>Cylinders | # of<br>Heads | # of Sectors<br>per Track | Capacity<br>MB <i>(Note 4)</i> |
|-------------------------|----------------------|----------------|--------------------------|-------------------------------|------------------------|------------------------|---------------|---------------------------|--------------------------------|
| OPEN-3                  | SCSI disk            | HITACHI        | OPEN-3                   | 4806720                       | 512                    | 3338                   | 15            | 96                        | 2347                           |
| OPEN-9                  | SCSI disk            | HITACHI        | OPEN-9                   | 14423040                      | 512                    | 10016                  | 15            | 96                        | 7042                           |
| OPEN-E                  | SCSI disk            | HITACHI        | OPEN-E                   | 28452960                      | 512                    | 19759                  | 15            | 96                        | 13893                          |
| OPEN-L                  | SCSI disk            | HITACHI        | OPEN-L                   | 71192160                      | 512                    | 49439                  | 15            | 96                        | 34761                          |
| OPEN-3*n                | SCSI disk            | HITACHI        | OPEN-3*n                 | 4806720*n                     | 512                    | 3338*n                 | 15            | 96                        | 2347*n                         |
| OPEN-9*n                | SCSI disk            | HITACHI        | OPEN-9*n                 | 14423040*n                    | 512                    | 10016*n                | 15            | 96                        | 7042*n                         |
| OPEN-E*n<br>(n=2 to 17) | SCSI disk            | HITACHI        | OPEN-E*n                 | 28452960*n                    | 512                    | 19759*n                | 15            | 96                        | 13893*n                        |
| OPEN-L*n                | SCSI disk            | HITACHI        | OPEN-L*n                 | 71192160*n                    | 512                    | 49439*n                | 15            | 96                        | 34761*n                        |
| (n=2 to 7)              |                      |                |                          |                               |                        |                        |               |                           |                                |
| OPEN-3 VLL              | SCSI disk            | HITACHI        | OPEN-3-CVS               | Note 5                        | 512                    | Note 6                 | 15            | 96                        | Note 7                         |
| OPEN-9 VLL              | SCSI disk            | HITACHI        | OPEN-9-CVS               | Note 5                        | 512                    | Note 6                 | 15            | 96                        | Note 7                         |
| OPEN-E VLL              | SCSI disk            | HITACHI        | OPEN-E-CVS               | Note 5                        | 512                    | Note 6                 | 15            | 96                        | Note 7                         |

Table 1.19900V Device Specifications

*Note 1:* The availability of a specific 9900V device type depends on the level of microcode installed on the 9900V subsystem.

*Note 2:* The SCSI disk devices are usually formatted with partitions and file systems for host operations. The SCSI disk devices can also be used as raw devices (e.g., some database applications use raw devices). Do not create a partition or file system on any raw device.

*Note 3:* The 9900V command device (used for Hitachi Command Control Interface operations) is distinguished by -**CM** on the product name (e.g., OPEN-3-CM, OPEN-3-CVS-CM). The product name for OPEN-*x* VLL devices is OPEN-*x*-CVS (CVS = custom volume size).

*Note 4:* The device capacity can sometimes be changed by the BIOS or host adapter board. Also, different capacities may be due to variations such as  $1 \text{ MB} = 1000^2 \text{ or } 1024^2 \text{ bytes}$ .

Note 5: The number of blocks for a VLL volume is calculated as follows:

# of blocks = (# of data cylinders)  $\times$  (# of heads)  $\times$  (# of sectors per track) Example: For an OPEN-3 VLL volume with capacity = 37 MB: # of blocks = (53 cylinders-see Note 6)  $\times$  (15 heads)  $\times$  (96 sectors per track) = 76320

*Note 6:* The number of data cylinders for a VLL volume is calculated as follows (1...1 means that the value should be rounded up to the next integer):

The number of data cylinders for an OPEN-x VLL volume =
 # of cylinders = ↑ (capacity (MB) specified on Remote Console PC) × 1024/720 ↑

 Example: For an OPEN-3 VLL volume with capacity = 37 MB:
 # of cylinders = ↑37 × 1024/720↑ = ↑52.62↑ (rounded up to next integer) = 53 cylinders

*Note 7:* The size of an OPEN-*x* VLL volume is specified by capacity in MB, not by number of cylinders. The user specifies the volume size using the 9900V Virtual LVI/LUN software. Note that OPEN-L cannot be used for VLL volumes.

## Chapter 2 Preparing for New Device Configuration

#### 2.1 Configuration Requirements

The requirements for 9900V SGI<sup>™</sup> IRIX<sup>®</sup> configuration are:

- Hitachi Lightning 9900<sup>™</sup> V Series subsystem, all-open or multiplatform configuration.
  - The 9900V LUN Manager software is used to configure the fibre-channel (FC) ports. If the remote LUN Manager feature is not installed, please contact your Hitachi Data Systems account team for information on LUN and fibre-channel configuration services.

*Note:* The availability of 9900V features and devices depends on the level of microcode installed on the 9900V subsystem.

- Server: SGI<sup>™</sup> O2 system, OCTANE<sup>®</sup>, Onyx2<sup>®</sup>, Challenge<sup>®</sup>, ORIGIN<sup>™</sup> 200, or ORIGIN<sup>™</sup> 2000 system. Please contact your Hitachi Data Systems account team for further information on server hardware requirements.
- SGI<sup>™</sup> IRIX<sup>®</sup> OS: versions 6.5.11, 6.5.12, 6.5.13. *Important*: Please contact Silicon Graphics<sup>®</sup> to make sure that the most current OS patches are installed on the SGI<sup>™</sup> systems(s).

*Note:* For the latest information on  $SGI^{\mathbb{M}}$  IRIX<sup>®</sup> version support, please contact your Hitachi Data Systems account team.

*Note:* Root (superuser) login access to the SGI<sup>™</sup> IRIX<sup>®</sup> system is required.

- **Fibre-channel adapters.** Make sure to install all utilities, tools, and drivers that come with the adapter(s). For information on driver requirements for the adapters, please refer to the user documentation for the adapter or contact the vendor.
  - The 9900V subsystem supports: 2 Gbps fibre-channel interface, including shortwave non-OFC (open fibre control) optical interface and multimode optical cables with LC connectors; and 1 Gbps fibre-channel interface, including shortwave non-OFC optical interface and multimode optical cables with SC connectors. Do not connect any OFCtype fibre-channel interface to the 9900V subsystem.
  - For information on supported FC adapters (FCAs), optical cables, hubs, and fabric switches, please contact your Hitachi Data Systems account team or the Hitachi Data Systems Support Center (see section 5.2).

#### 2.2 Installing the 9900V Subsystem

The 9900V subsystem comes with all hardware and cabling required for installation. Installation of the 9900V subsystem involves the following activities:

- 1. Hardware installation. The Hitachi Data Systems representative performs hardware installation as specified in the 9900V maintenance manual. Follow all precautions and procedures in the 9900V maintenance manual. Check all specifications to ensure proper installation and configuration. Hardware installation includes:
  - Assembling all hardware and cabling.
  - Installing and formatting the logical devices (LDEVs) using the SVP. Make sure to get the desired LDEV configuration information from the user, including the desired number of OPEN-x, LUSE, and VLL devices.

*Note:* The SGI<sup>m</sup> IRIX<sup>®</sup> system can only recognize up to 32 LUs (per port). Make sure to determine the number of 9900V LUs based on this restriction.

Installing the fibre-channel adapters and cabling: The total fibre cable length attached to each fibre-channel adapter must not exceed 500 meters (1,640 feet). Do not connect any OFC-type connector to the 9900V subsystem. Do not connect/disconnect fibre-channel cabling that is being actively used for I/O. This can cause the SGI<sup>™</sup> IRIX<sup>®</sup> system to hang. Always confirm that the devices on the fibre cable are offline before connecting or disconnecting the fibre cable.

**9900V FC Port:** The fibre topology parameters for each 9900V fibre-channel port depend on the type of device to which the 9900V port is connected. Determine the topology parameters supported by the device, and set your topology accordingly (see section 2.3.2). The type of 9900V port is also important.

*Note:* The Hitachi Data Systems representative must use the 9900V Maintenance Manual during all installation activities. Follow all precautions and procedures in the maintenance manual, and always check all specifications to ensure proper installation and configuration.

LUN Manager software installation. The user can perform this activity. You will use the LUN Manager software to configure the fibre-channel ports. For instructions on installing the LUN Manager Remote Console software, please refer to the *Hitachi Lightning 9900™* V Series Remote Console - Storage Navigator User's Guide (MK-92RD101) and the *Hitachi Lightning 9900™* V Series LUN Manager User's Guide (MK-92RD105).

*Note:* If the remote LUN Manager feature is not installed, please contact your Hitachi Data Systems account team for information on fibre-channel configuration services.

#### 2.3 Preparing for 9900V Device Configuration

Before the 9900V is connected to the SGI<sup>™</sup> system, you must perform the following tasks:

- Set the host mode for the 9900V fibre-channel port(s) (see section 2.3.1), and
- Configure the 9900V fibre-channel ports (see section 2.3.2).

You will use the LUN Manager Remote Console software to set the host modes for and configure the 9900V fibre ports. For instructions on using the LUN Manager software, please refer to the *Hitachi Lightning 9900*<sup>m</sup> V Series LUN Manager User's Guide (MK-92RD105). Note: If the remote LUN Manager feature is not installed, please contact your Hitachi Data Systems account team for information on fibre-channel configuration services.

After completing these steps, you will shut down the SGI<sup>M</sup> system, connect the 9900V subsystem, and then restart the SGI<sup>M</sup> system (see section 2.4).

#### 2.3.1 Setting the Host Mode for the 9900V Ports

The 9900V ports have special modes which must be set for the connected operating system. Use the LUN Manager Remote Console software to set the host mode for each port (see Figure 2.1). The required host mode setting for 9900V SGI<sup>m</sup> IRIX<sup>®</sup> operations is **00** (standard mode, default setting).

| Web Console - Hita | achi 9980V/9940V |         | ×           |
|--------------------|------------------|---------|-------------|
| Add New H          | ost Group        |         |             |
| Group Name         | new-hg           | (Max. 8 | characters) |
| Host Mode          | 00[Standard]     |         |             |
|                    |                  | ОК      | Cancel      |
| Java Applet Windo  | W                |         |             |

Figure 2.1 Setting the Host Mode

#### 2.3.2 Configuring the 9900V Fibre-Channel Ports

You need to configure the 9900V FC ports to define the fibre parameters (see Figure 2.2, Table 2.1, and Table 2.2). You will use the LUN Manager Remote Console software to configure the 9900V FC ports. For instructions on using the LUN Manager software, please refer to the *Hitachi Lightning 9900*<sup>m</sup> V Series LUN Manager User's Guide (MK-92RD105).

*Note:* The 9900V subsystem supports up to 256 devices per port, but the SGI<sup>m</sup> IRIX<sup>®</sup> system only recognizes 32 devices per port.

**Fibre topology.** Figure 2.2 shows the LUN Manager panel used to define the port parameters, and Table 2.1 explains the settings on this panel. You will select the appropriate settings for each 9900V FC port based on the device to which the port is connected. Determine the topology parameters supported by the device, and set your topology accordingly. The type of 9900V port is also important. *Note:* If you plan to connect different types of servers to the 9900V via the same fabric switch, you must use the **zoning** function of the fabric switch.

**Port address**. In fabric environments, the port addresses are assigned automatically by fabric switch port number and are not controlled by the 9900V port settings. In arbitrated loop environments, the port addresses are set by entering an AL-PA (arbitrated-loop physical ddress, or loop ID). Table 2.2 shows the available AL-PA values ranging from 01 to EF. Fibre-channel protocol uses the AL-PAs to communicate on the fibre-channel link, but the software driver of the platform host adapter translates the AL-PA value assigned to the 9900V port to a SCSI TID. See Appendix A for a description of the AL-PA-to-TID translation.

**Note on loop ID conflict:** The SGI<sup>™</sup> system assigns port addresses from lowest (01) to highest (EF). To avoid loop ID conflict, assign the port addresses from highest to lowest (i.e., starting at EF). The AL-PAs should be unique for each device on the loop to avoid conflicts. Do not use more than one port address with the same TID in same loop (e.g., addresses EF and CD both have TID 0, refer to Appendix A for the TID-to-AL-PA mapping).

| Fabric Parameter | Connection Parameter | Provides:                         |
|------------------|----------------------|-----------------------------------|
| ON               | FC-AL                | FL-port (fabric port)             |
| ON               | Point-to-Point       | F-port (fabric port)              |
| OFF              | FC-AL                | NL-port (private arbitrated loop) |
| OFF              | Point-to-Point       | Not supported                     |

Table 2.1 Fibre Parameter Settings on the 9900V Remote Console PC

*Note:* Please contact Hitachi Data Systems for detailed information about port topology configurations supported by each host bus adapter/switch combination.

| LUN Manager Port                                                                    |                                                                                                                                |                                          |                                                |                                                                     |                                  |                                                  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|----------------------------------|--------------------------------------------------|
| Port Mode                                                                           |                                                                                                                                |                                          |                                                |                                                                     |                                  |                                                  |
| Package                                                                             |                                                                                                                                |                                          | Port                                           |                                                                     |                                  |                                                  |
| All<br>CHA-1P<br>CHA-1Q<br>CHA-1R<br>CHA-1S<br>CHA-2V<br>CHA-2W<br>CHA-2W<br>CHA-2X | Port Name<br>CL1-E<br>CL1-F[E 2nd]<br>CL1-G[E 3rd]<br>CL1-H[E 4th]<br>CL1-H[E 4th]<br>Change Port Mod<br>Select a Port<br>Mode | Type<br>Fibre<br>Fibre<br>Fibre<br>Fibre | Host Speed<br>2GB/s<br>1GB/s<br>1GB/s<br>1GB/s | Addr.(Loop ID)<br>E1 (4)<br>AD (35)<br>E0 (5)<br>AB (37)<br>Current | Fabric<br>OFF<br>ON<br>OFF<br>ON | Connection<br>P-to-P<br>FC-AL<br>P-to-P<br>FC-AL |
|                                                                                     |                                                                                                                                | Fibre Add<br>Fabric :<br>Connecti        | Intress: AD (35)                               |                                                                     | >> Set                           | Clear<br>Clear                                   |

Figure 2.2 Setting the Fibre-Channel Port Parameters

| EF | CD | B2 | 98 | 72 | 55 | 3A | 25 |
|----|----|----|----|----|----|----|----|
| E8 | CC | B1 | 97 | 71 | 54 | 39 | 23 |
| E4 | СВ | AE | 90 | 6E | 53 | 36 | 1F |
| E2 | CA | AD | 8F | 6D | 52 | 35 | 1E |
| E1 | C9 | AC | 88 | 6C | 51 | 34 | 1D |
| E0 | C7 | AB | 84 | 6B | 4E | 33 | 1B |
| DC | C6 | AA | 82 | 6A | 4D | 32 | 18 |
| DA | C5 | A9 | 81 | 69 | 4C | 31 | 17 |
| D9 | C3 | A7 | 80 | 67 | 4B | 2E | 10 |
| D6 | BC | A6 | 7C | 66 | 4A | 2D | 0F |
| D5 | BA | A5 | 7A | 65 | 49 | 2C | 08 |
| D4 | B9 | A3 | 79 | 63 | 47 | 2B | 04 |
| D3 | B6 | 9F | 76 | 5C | 46 | 2A | 02 |
| D2 | B5 | 9E | 75 | 5A | 45 | 29 | 01 |
| D1 | B4 | 9D | 74 | 59 | 43 | 27 |    |
| CE | B3 | 9B | 73 | 56 | 3C | 26 |    |

Table 2.2 Available AL-PA Values

#### Connecting the 9900V Subsystem to the SGI™ System 2.4

After you have set the host modes for and configured the 9900V fibre-channel ports, you are ready to connect the 9900V subsystem to the SGI<sup>™</sup> system. The 9900V subsystem comes with all hardware and cabling required for connection to the host system(s).

To connect the 9900V subsystem:

- 1. Verify subsystem installation. The Hitachi Data Systems representative verifies that the status of the fibre-channel adapters and LDEVs is NORMAL.
- 2. Shut down the SGI<sup>™</sup> system. The SGI<sup>™</sup> system must be powered OFF before the 9900V is connected. The user should perform this activity.
  - a) Shut down the SGI<sup>™</sup> system as usual (e.g., shutdown -y -g0 -i0).
  - b) When shutdown is complete, power off the SGI<sup>™</sup> display.
  - c) Power off all peripheral devices except for the 9900V subsystem.
  - d) Power off the SGI<sup>™</sup> system. You are now ready to connect the 9900V subsystem.
- 3. Connect the 9900V to the SGI<sup>™</sup> system. The Hitachi Data Systems representative installs the fibre-channel cables between the 9900V and the SGI™ system.

Note: The Hitachi Data Systems representative must use the 9900V maintenance manual during all installation activities. Follow all precautions and procedures in the maintenance manual, and always check all specifications to ensure proper installation and configuration.

- 4. Power on the SGI<sup>™</sup> system. The user should perform this activity. To power on the SGI<sup>™</sup> system after connecting the 9900V subsystem:
  - a) Power on the SGI<sup>™</sup> system display.
  - b) Power on all peripheral devices. The 9900V subsystem should already be on, the host modes should already be set, and the fibre-channel ports should already be configured. If the host modes or FC ports are configured after the SGI<sup>™</sup> system is powered on, the system must be restarted in order to recognize the new devices.
  - c) Confirm the ready status of all devices.
  - d) Power on the SGI<sup>™</sup> system. *Note:* Some SGI<sup>™</sup> systems may require you to use the System Maintenance Menu to start the system.

## Chapter 3 Configuring the New Devices

After 9900V installation and connection are complete as described in Chapter 2, the devices on the 9900V subsystem are ready to be configured for use. Configuration of the new 9900V disk devices is performed by the user and requires **root** access to the SGI<sup>m</sup> IRIX<sup>®</sup> system.

The activities involved in new device configuration are:

- Verifying new device recognition (see section 3.1),
- Partitioning the devices (see section 3.2),
- Enabling command tag queuing (CTQ) (see section 3.3),
- Creating the file systems (see section 3.4),
- Creating the mount directories and mounting the devices (see section 3.5),
- Verifying the file systems (see section 3.6), and
- Setting the auto-mount parameters (see section 3.7).

*Note on the term "SCSI disk":* The 9900V logical devices are defined to the host as SCSI disk devices, even though the interface is fibre-channel.

**Failover and SNMP:** Chapter 4 provides information on failover and SNMP configuration for the 9900V subsystem.

Troubleshooting: Chapter 5 provides troubleshooting information.

**AL-PA to SCSI TID mapping.** For information on the fibre-channel AL-PA to SCSI TID mapping, please refer to Appendix A.

**Online device installation:** Appendix B provides instructions for online 9900V device installation.

#### 3.1 Verifying New Device Recognition

The first step in configuring the 9900V devices for SGI<sup> $\mathbb{M}$ </sup> IRIX<sup>®</sup> operations is to verify that the SGI<sup> $\mathbb{M}$ </sup> system recognizes the new devices on the 9900V subsystem. The SGI<sup> $\mathbb{M}$ </sup> IRIX<sup>®</sup> system creates device files for new devices automatically during server startup.

**WARNING:** Make sure that LUN 0 is defined for each target ID. If LUN 0 is not defined, the SGI<sup>m</sup> IRIX<sup>®</sup> system will not recognize the rest of the LUs on that target ID.

To verify that the SGI<sup>™</sup> IRIX<sup>®</sup> system recognizes the new 9900V devices:

- 1. Log in to the SGI<sup>™</sup> system as **root**.
- 2. Display the peripheral device information using the **hinv** command (see Figure 3.1 and Figure 3.2).
- 3. Verify that the system recognizes all new 9900V devices. *Note:* LUN 0 is implied when no LU number is listed.

11

```
# hinv
                                                                     ← Display device info.
4 250 MHZ IP27 Processors
CPU: MIPS R10000 Processor Chip Revision: 3.4
FPU: MIPS R10010 Floating Point Chip Revision: 0.0
Main memory size: 2048 Mbytes
Instruction cache size: 32 Kbytes
Data cache size: 32 Kbytes
Secondary unified instruction/data cache size: 4 Mbytes
Integral SCSI controller 2: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 0: Version QL1040B (rev. 2), single ended
 Disk drive: unit 1 on SCSI controller 0
 CDROM: unit 6 on SCSI controller 0
Integral SCSI controller 1: Version QL1040B (rev. 2), single ended
Integral SCSI controller 3: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 4: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 5: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 6: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 8: Version Fibre Channel QL2200
 Disk drive: unit 0 on SCSI controller 8
                                                       \leftarrow TID=0, LUN = 0, SCSI controller 8.
 Disk drive: unit 0, lun 1 on SCSI controller 8
                                                       \leftarrow TID=0, LUN = 1, SCSI controller 8.
 Disk drive: unit 0, lun 2 on SCSI controller 8
                                                       \leftarrow TID=0, LUN = 2, SCSI controller 8.
 Disk drive: unit 0, lun 3 on SCSI controller 8
 Disk drive: unit 0, lun 4 on SCSI controller 8
  Disk drive: unit 0, lun 5 on SCSI controller 8
  Disk drive: unit 0, lun 6 on SCSI controller 8
  Disk drive: unit 0, lun 7 on SCSI controller 8
  Disk drive: unit 0, lun 8 on SCSI controller 8
  Disk drive: unit 0, lun 9 on SCSI controller 8
  Disk drive: unit 0, lun 10 on SCSI controller 8
 Disk drive: unit 0, lun 11 on SCSI controller 8
 Disk drive: unit 0, lun 12 on SCSI controller 8
 Disk drive: unit 0, lun 13 on SCSI controller 8
 Disk drive: unit 0, lun 14 on SCSI controller 8
 Disk drive: unit 0, lun 15 on SCSI controller 8
Integral SCSI controller 7: Version Fibre Channel AIC-1160, revision 2
IOC3 serial port: ttyl
IOC3 serial port: tty2
Integral Fast Ethernet: ef0, version 1, module 1, slot io1, pci 2
Origin FIBRE CHANNEL board, module 1 slot 8: Revision 4
Origin BASEIO board, module 1 slot 1: Revision 4
Origin FIBRE CHANNEL board, module 1 slot 4: Revision 4
Origin FIBRE CHANNEL board, module 1 slot 7: Revision 4
Origin PCI XIO board, module 1 slot 2: Revision 4
IOC3 external interrupts: 1#
```

Figure 3.1 Verifying New Device Recognition (without fabric)

← Display device info.

```
# hinv
4 250 MHZ IP27 Processors
CPU: MIPS R10000 Processor Chip Revision: 3.4
FPU: MIPS R10010 Floating Point Chip Revision: 0.0
Main memory size: 2048 Mbytes
Instruction cache size: 32 Kbytes
Data cache size: 32 Kbytes
Secondary unified instruction/data cache size: 4 Mbytes
Integral SCSI controller 2: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 0: Version QL1040B (rev. 2), single ended
 Disk drive: unit 1 on SCSI controller 0
 CDROM: unit 6 on SCSI controller 0
Integral SCSI controller 1: Version QL1040B (rev. 2), single ended
Integral SCSI controller 3: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 4: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 5: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 8: Version Fibre Channel QL2200
 Fabric Disk: node 50000e10ff809999 port 0 lun 0 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 1 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 2 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 3 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 4 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 5 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 6 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 7 on SCSI controller 8
 Fabric Disk: node 50000e10ff809999 port 0 lun 8 on SCSI controller 8
Integral SCSI controller 6: Version Fibre Channel AIC-1160, revision 2
Integral SCSI controller 7: Version Fibre Channel AIC-1160, revision 2
IOC3 serial port: ttyl
IOC3 serial port: tty2
Integral Fast Ethernet: ef0, version 1, module 1, slot io1, pci 2
Origin FIBRE CHANNEL board, module 1 slot 7: Revision 4
Origin BASEIO board, module 1 slot 1: Revision 4
Origin FIBRE CHANNEL board, module 1 slot 4: Revision 4
Origin PCI XIO board, module 1 slot 2: Revision 4
Origin FIBRE CHANNEL board, module 1 slot 3: Revision 4
IOC3 external interrupts: 1
```

Figure 3.2 Verifying New Device Recognition (with fabric)

#### 3.1.1 Device Files and WWNs

The SGI<sup> $\mathbb{M}$ </sup> IRIX<sup>®</sup> system creates device files for new devices automatically during server startup. For LUN 0 the device name may not specify the LU number. The **rdsk** devices use a raw interface, while the **dsk** devices use a block interface. The **port#** and **nodename** are used to indicate the worldwide name (WWN) and the device port numbers (fibre-channel disks have two ports). The **vh** and **vol** devices are only in the **rdsk** directory, since they are normally used only for ioctl and raw access.

The format for device file names in SGI<sup>™</sup> IRIX<sup>®</sup> is:

- FC-AL (and parallel SCSI): /dev/rdsk/dkscontroller#ddrive#{spartition#|vh|vol} /dev/rdsk/dkscontroller#ddrive#llun#{spartition#|vh|vol} /dev/dsk/dkscontroller#ddrive#spartition# /dev/dsk/dkscontroller#ddrive#llun#spartition# Example: /dev/rdsk/dks8d0l8s0
- Fibre-channel fabric: /dev/rdsk/nodename/lunlun#{spartition#|vh|vol}/ccontroller#pport# /dev/dsk/nodename/lunlun#spartition#/ccontroller#pport#
   Example: /dev/rdsk/50000e10ff809999/lun1vol/c8p50000e10ff809999

**Note on WWN with BROCADE SilkWorm 2800 fabric switch:** When the BROCADE SilkWorm 2800 fabric switch is used, the WWN information is displayed by the **nsShow** command (see Figure 3.3). The **PortName** (column 4) is the WWN, and the **NodeName** is the device port number.

```
switch:admin> nsShow
   The Local Name Server has 7 entries {
Type Pid
         COS PortName
                                          NodeName
                                                             TTL(sec)
*N 011200; 2,3;10:00:00:60:69:00:ab:ba;10:00:00:60:69:00:ab:ba; 60
    FC4s: FCIP
    021200; 2,3;10:00:00:60:69:00:03:19;30:00:00:60:69:00:03:19; na
Ν
    FC4s: FCTP
N
  021300; 3;10:00:00:60:69:00:02:d6;20:00:00:60:69:00:02:d6; na
NL 0214e2; 3;21:00:00:fa:ce:00:21:1e;20:00:00:fa:ce:00:21:1e; na
    FC4s: FCP [STOREX RS2999FCPH3
                                     MT091
NL 0214e4; 3;21:00:00:fa:ce:00:21:e1;20:00:00:fa:ce:00:21:e1; na
    FC4s: FCP [STOREX RS2999FCPH3 CD09]
NL 0214e8; 3;21:00:00:fa:ce:04:83:c9;20:00:00:fa:ce:04:83:c9; na
    FC4s: FCP [STOREX RS2999FCPH3 NS09]
NL 0214ef; 3;21:00:00:ad:bc:04:6f:70;20:00:00:ad:bc:04:6f:70; na
    FC4s: FCP [STOREX RS2999FCPH3
                                     JTB091
     }
```

Note: PortName = WWN; NodeName = device port number.

Figure 3.3 Displaying the WWN (NodeName) on BROCADE Fabric Switch

#### 3.2 Partitioning the Disk Devices

After new device recognition has been verified, you need to partition the new SCSI disk devices using the fx utility (see Figure 3.4 and Figure 3.5). After setting the partitions for a device, verify the partitions using the **prtvtoc** command (see Figure 3.6).

**Available partitions:** The IRIX<sup>®</sup> system controls disk devices using partitions. One LU can be divided into a maximum of sixteen partitions (primary partition 0 through 15). The maximum capacity per partition is not limited. Partition #8 (vh) and partition #9 are reserved and are used for storing disk management information. Partition #10 is also reserved. Therefore, the number of available partitions per device is thirteen (0-7 and 11-15).

**WARNING**: Do not partition or label a disk device that will be accessed as a raw device (e.g. some database applications use raw devices).

*Note:* Do not change partitions 8, 9, or 10. Set the partitions (except partition 10) so as not to a partition is on top of other partition. Because partition 8 usually uses parts between 0 and 6, set that base of first setting partition is 6.



Figure 3.4 Partitioning and Labeling the Disk Devices (without fabric) (continues on the next page)

fx/repartition/expert: change partition = (0) 0← Enter partition number. block 266240, before: type xfs 130 MB len: 4540416 blks, 2217 MB fx/repartition/expert: partition type = (xfs) **xfs** ← Enter partition type. fx/repartition/expert: base in megabytes = (130) 2 fx/repartition/expert: size in megabytes (max 2347) = (2217) 1024 block 4096, 2 MB after: type xfs len: 2097152 blks, 1024 MB fx/repartition/expert: change partition = (1) 1 ← Enter partition number. before: type xfs block 4096, 2 MB len: 262144 blks, 128 MB fx/repartition/expert: partition type = (xfs) **xfs** ← Enter partition type. fx/repartition/expert: base in megabytes = (2) 1026 fx/repartition/expert: size in megabytes (max 1323) = (128) 1024 after: type xfs block 2097152, 1024 MB len: 2097152 blks, 1024 MB fx/repartition/expert: change partition = (2) 2← Enter partition number. 0 MB before: type xfs block 0, len: 0 blks, 0 MB fx/repartition/expert: partition type = (xfs) **xfs** ← Enter partition type. fx/repartition/expert: base in megabytes = (0) 2050 fx/repartition/expert: size in megabytes (max 299) = (0) 297 after: type xfs block 4194304, 2048 MB len: 608256 blks, 297 MB : ----- partitions-----Megabytes part type blocks (base+size) 0: xfs 0 + 2097152 2 + 10241: xfs 2097152 + 2097152 1026 + 1024 3: xfs 4194304 + 608256 2050 + 297 8: volhdr 0 + 4096 0 + 210: volume 0 + 4806656 0 + 2347capacity is 4806656 blocks ----- please choose one (? for help, .. to quit this menu)-----[ro]otdrive [o]ptiondrive [e]xpert [u]srrootdrive [re]size ← Enter "..." to quit menu. fx/repartition> .. ----- please choose one (? for help, .. to quit this menu)-----[exi]t [d]ebug/ [l]abel/ [a]uto [b]adblock/ [exe]rcise/ [r]epartition/ fx>**exi** ← Exit the fx utility. #

Figure 3.4 Partitioning and Labeling the Disk Devices (without fabric) (continued)

```
fx version 6.5, Jan 11, 2000
...opening /dev/rdsk/50000e10ff809999/lun2vol/c8p50000e10ff809999
...drive selftest...OK
Scsi drive type == HITACHI
                       OPEN-3
                                   5245
----- please choose one (? for help, .. to quit this menu)-----
[exi]t
       [d]ebug/ [1]abel/
                                          [a]uto
[b]adblock/
              [exe]rcise/
                            [r]epartition/
fx> r
                                              ← Enter r for partition menu.
```

#### Figure 3.5 Partitioning and Labeling a Device Connected via Fabric Switch

Figure 3.6 Verifying a Partition

#### 3.3 Enabling Command Tag Queuing

Command tag queuing (CTQ) must be enabled to optimize the performance of the 9900V devices. Since CTQ is disabled by default in  $IRIX^{\oplus}$  systems, you need to enable it and set the queue depth for each 9900V logical device using the **fx** utility. Table 3.1 lists the queue depth requirements for the 9900V devices.

Table 3.1 Queue Depth Requirements for the 9900V Devices

| Parameter            | Required Value |
|----------------------|----------------|
| Queue depth per LU   | ≤ 32           |
| Queue depth per port | ≤ 256          |

*Note:* You can adjust the queue depth for the 9900V devices later as needed (within the specified range) to optimize the I/O performance of the 9900V devices. If I/O response time will be long, you must adjust queue depth parameter. You can check the response time using the **sar** command (see Figure 3.7) and set queue depth within 10 seconds.

| sgi 1# sa:<br>IRIX64 sg | r -d 1 10<br>i 6.5-ALPHA | A-12767 | 37220 0 | 9080737 | IP27   | 10/17, | /00     |        | 🗲 Input | sar command. |
|-------------------------|--------------------------|---------|---------|---------|--------|--------|---------|--------|---------|--------------|
| 11:01:02                | device                   | %busy   | avque   | r+w/s   | blks/s | w/s    | wblks/s | avwait | avserv  | ← Response   |
| 11:01:03                | dks0d1                   | 0       | 0.0     | 0.0     | 0      | 0.0    | 0       | 0.0    | 0.0     | time (msec)  |
|                         | dks0d6                   | 0       | 0.0     | 0.0     | 0      | 0.0    | 0       | 0.0    | 0.0     |              |
|                         | dks14d0                  | 100     | 4.0     | 2.0     | 133    | 2.0    | 133     | 1745.0 | 290.0   |              |
|                         | dks14d011                | 100     | 5.5     | 3.9     | 500    | 1.0    | 125     | 1117.5 | 285.0   |              |
|                         | dks14d012                | 100     | 4.5     | 2.0     | 250    | 0.0    | 0       | 955.0  | 510.0   |              |
|                         | dks14d013                | 100     | 5.2     | 3.9     | 2219   | 1.0    | 2       | 1735.0 | 255.0   |              |
|                         | dks14d014                | 100     | 5.7     | 2.9     | 252    | 1.0    | 2       | 963.3  | 276.7   |              |
|                         | dks14d015                | 100     | 5.0     | 2.0     | 250    | 0.0    | 0       | 1585.0 | 370.0   |              |

#### Figure 3.7 Checking the I/O Response Time Using the Sar Command

To enable CTQ and set the queue depth for the 9900V devices (see Figure 3.8):

- 1. Start the fx disk utility, and select the desired device to configure.
- 2. Once the device is selected and the fx> prompt reappears, enter /label/set/para to set the command tag queuing and queue depth options.
- 3. When prompted, enter **enable** to enable CTQ, and enter the desired CTQ depth (e.g., 32).
- 4. When prompted, enter yes to modify the drive parameters as specified.
- 5. Exit the **fx** utility, and enter **yes** to write out (save) the changes to the drive parameters.
- 6. Repeat steps (1) through (5) for each new 9900V disk device.

```
# fx -x "dksc(8,0,15)"
                                                        ← Start fx and enter 9900V device.
fx version 6.5, Jan 11, 2000
... opening dksc(8,0,15)
...drive selftest...OK
fx: Warning: invalid label from disk driver, ignored
                              OPEN-3-CVS
Scsi drive type == HITACHI
                                               5244
... creating default bootinfo
... created default partitions, use /repartition menu to change
... creating default volume directory
----- please choose one (? for help, .. to quit this menu)-----
[exi]t
             [d]ebug/ [l]abel/ [a]uto
[b]adblock/
                  [exe]rcise/
                                     [r]epartition/
fx> /label/set/param
                                                              ← Set the device parameters.
fx/label/set/parameters: Error correction = (enabled)
fx/label/set/parameters: Data transfer on error = (enabled)
fx/label/set/parameters: Report recovered errors = (enabled)
fx/label/set/parameters: Delay for error recovery = (enabled)
fx/label/set/parameters: Err retry count = (0)
fx/label/set/parameters: Transfer of bad data blocks = (disabled)
fx/label/set/parameters: Auto bad block reallocation (write) = (enabled)
fx/label/set/parameters: Auto bad block reallocation (read) = (enabled)
fx/label/set/parameters: Read ahead caching = (enabled)
fx/label/set/parameters: Write buffering = (enabled)
fx/label/set/parameters: Drive disable prefetch = (0)
fx/label/set/parameters: Drive minimum prefetch = (0)
fx/label/set/parameters: Drive maximum prefetch = (0)
fx/label/set/parameters: Drive prefetch ceiling = (0)
                                                                         ← Enter "enable".
fx/label/set/parameters: Enable CTQ = (disabled) enable
fx/label/set/parameters: CTQ depth = (2) 32
                                                              ← Enter desired queue depth.
fx/label/set/parameters: Read buffer ratio = (0/256)
fx/label/set/parameters: Write buffer ratio = (0/256)
* * * * * WARNING * * * * *
about to modify drive parameters on disk dksc(8,0,15)! ok? yes
                                                                           ← Enter "yes".
----- please choose one (? for help, .. to quit this menu)-----
[exi]t
                  [d]ebug/
                                     [l]abel/
                                                       [a]uto
[b]adblock/
                  [exe]rcise/
                                     [r]epartition/
fx> exi
                                                                    ← Exit the fx utility.
label info has changed for disk dksc(8,0,15). write out changes? (yes) yes 🗧 Enter "yes".
```



#### 3.4 Creating the File Systems

After partitioning and enabling CTQ for the new devices, you can create the file systems on the new SCSI disk devices. The standard file system is  $ESF^{M}$ , and the extended file system is  $XFS^{M}$ . The  $EFS^{M}$  file system creates one file system of 2 GB or less on a single device without the extended logical volume manager (XLV). The  $XFS^{M}$  file system creates a 64-bit file system capable of scaling to handle extremely large files and file systems. The file system created is application-dependent. Make sure to select the correct file system for your operational setup.

Note: Do not create a file system on partition 8 or 10.

**WARNING**: Do not create a file system on a disk device that will be accessed as a raw device (e.g. some database applications use raw devices).

#### 3.4.1 EFS™ File System

To create an EFS<sup>™</sup> file system:

 Use the mkfs command to create an EFS<sup>™</sup> file system. For example, to create an EFS<sup>™</sup> file system for controller 8, drive (TID) 0, logical unit 15, partition 0, enter: mkfs /dev/rdsk/dks8d0l15s0

*Note:* For fabric-connected devices, use the fabric device file name (see section 3.1.1) (e.g., /dev/rdsk/50000e10ff809999/lun2sl/c8p50000e10ff809999).

2. Repeat step (1) for each device partition on which you want to create an EFS™ file system.

#### 3.4.2 XFS<sup>™</sup> File System

To create an XFS<sup>™</sup> file system:

 Use the mkfs command to create an XFS<sup>™</sup> file system. For example, to create an XFS<sup>™</sup> file system for controller 8, drive (TID) 0, logical unit 15, partition 0, enter: mkfs -t xfs -d name=/dev/rdsk/dks8d0l15s0

*Note:* For fabric-connected devices, use the fabric device file name (see section 3.1.1) (e.g., /dev/rdsk/50000e10ff809999/lun2sl/c8p50000e10ff809999).

2. Repeat step (1) for each device partition on which you want to create an XFS<sup>™</sup> file system.

#### 3.5 Creating the Mount Directories and Mounting the Devices

After you have created the file systems for the new 9900V SCSI disk devices, you can create the mount directories and mount the new devices. Make sure to choose a unique directory name which identifies the logical volume.

To create the mount directories and mount the new SCSI disk devices:

- Create the desired new mount directories using the mkdir command. For example, to create a mount directory for logical unit 0 on the 9900V, enter: mkdir /9900V\_LU00
- Mount all new 9900V devices using the mount command. For example, to mount partition 0 of LUN 15, drive (TID) 0, controller 8, enter: mount /dev/dsk/dks8d0l15s0 /9900V\_LU00

#### 3.6 Verifying the File Systems

Verify the file systems for the new 9900V disk devices using the **df** command (see Figure 3.9). Make sure that the capacity value (**kB**) for each device is correct.

Figure 3.9 Verifying the New File Systems

#### 3.7 Setting the Auto-Mount Parameters

The final step in configuring the 9900V devices for  $SGI^{\mathbb{M}} IRIX^{\otimes}$  operations is to set the automount parameters for the new devices. For each device to be auto-mounted, you will add the device to the system auto-mount table (*/etc/fstab* file). If you do not plan to automount any of the 9900V devices, you can skip this section.

To add new devices to the system auto-mount table:

- 1. First make a backup copy of the mount table: cp /etc/fstab /etc/fstab.backup
- 2. Add each desired new device to the mount table as shown in Figure 3.10. Table 3.2 describes the auto-mount parameters.

| # cp /etc/fstab /e  | tc/fstab.backup | )   |                   |   |   | $\leftarrow$ Make backup. |
|---------------------|-----------------|-----|-------------------|---|---|---------------------------|
| # vi /etc/fstab     |                 |     |                   |   |   | ← Edit mount table.       |
| /dev/root           | /               | xfs | rw,raw=/dev/rroot | 0 | 0 |                           |
| /dev/dsk/dks8d0115s | 0 /DKC310_LU00  | xfs | rw,noquota        | 0 | 1 | ← Enter new device.       |
| 1                   | 2               | 3   | 4                 | 5 | 6 | ← See Table 3.2.          |
| :                   |                 |     |                   |   |   |                           |

#### Figure 3.10 Setting the Auto-Mount Parameters

| No. | Description                                               |  |  |  |
|-----|-----------------------------------------------------------|--|--|--|
| 1   | Device to mount (device file name).                       |  |  |  |
| 2   | Mount point (mount directory).                            |  |  |  |
| 3   | File system (FS) type.                                    |  |  |  |
| 4   | Mount options (usually [rw,noquota]).                     |  |  |  |
| 5   | Enhance – enter 0 for 9900V devices.                      |  |  |  |
| 6   | fsck pass – order in which FS checks are to be performed. |  |  |  |

## Chapter 4 Failover and SNMP Configuration

The 9900V subsystem supports industry-standard products and functions which provide host failover, application failover, I/O path failover, and logical volume management (LVM). For the SGI<sup>m</sup> IRIX<sup>®</sup> environment, the 9900V subsystem currently supports the following products and functions (please contact your Hitachi Data Systems representative for the latest information):

- IRIS FailSafe<sup>™</sup> and SGI<sup>™</sup> Advanced Cluster Environment (ACE) software for application/host failover.
- The XLV extended logical volume manager for SGI<sup>™</sup> IRIX<sup>®</sup> systems.

The 9900V disk subsystem also supports the industry-standard simple network management protocol (SNMP) for remote subsystem management from the UNIX<sup>®</sup>/PC server host. SNMP is used to transport management information between the 9900V SVP and the SNMP manager on the host. The SNMP agent on the SVP sends status information to the host(s) when requested by the host or when a significant event occurs.

*Note:* The user is responsible for configuring the failover and SNMP management software on the UNIX<sup>®</sup>/PC server host. For assistance with failover and/or SNMP configuration on the host, please refer to the user documentation, or contact the vendor's technical support.

#### 4.1 Host/Application Failover

The 9900V subsystem supports the IRIS FailSafe<sup>™</sup> and SGI<sup>™</sup> Advanced Cluster Environment (ACE) software products for the SGI<sup>™</sup> IRIX<sup>®</sup> operating system. The user must make sure to configure the host failover software and any other high-availability (HA) software as needed to recognize and operate with the newly attached 9900V devices.

For assistance with IRIS FailSafe<sup>M</sup> and/or SGI<sup>M</sup> ACE operations, please refer to the user documentation, or contact SGI<sup>M</sup> technical support.

#### 4.2 SNMP Remote Subsystem Management

SNMP is a part of the TCP/IP protocol suite that supports maintenance functions for storage and communication devices. The 9900V subsystem utilizes SNMP to transfer status and management commands to the UNIX<sup>®</sup>/PC server host via the 9900V SVP (see Figure 4.1). When the SNMP manager requests status information or when a service information message (SIM) occurs, the SNMP agent on the 9900V SVP notifies the SNMP manager on the UNIX<sup>®</sup>/PC server host. Notification of 9900V error conditions is made in real time, providing UNIX<sup>®</sup> and PC server users with the same level of monitoring and support which is available to S/390<sup>®</sup> mainframe users. The SIM reporting via SNMP enables the user to monitor the 9900V subsystem from the UNIX<sup>®</sup>/PC server host.

When a SIM occurs, the 9900V SNMP agent initiates trap operations, which alert the SNMP manager of the SIM condition. The SNMP manager receives the SIM traps from the SNMP agent, and can request information from the SNMP agent at any time.

*Note:* The user is responsible for configuring the SNMP manager on the SGI<sup>M</sup> IRIX<sup>®</sup> host. For assistance with SNMP manager configuration on the SGI<sup>M</sup> IRIX<sup>®</sup> host, please refer to the user documentation, or contact the vendor's technical support.



Figure 4.1 9900V SNMP Environment

## Chapter 5 Troubleshooting

#### 5.1 Troubleshooting

The Hitachi Lightning  $9900 \text{ }^{\text{M}}$  V Series subsystem provides continuous data availability. For troubleshooting information for the 9900V subsystem, please refer to the *Hitachi Lightning* 9900  $^{\text{M}}$  V Series User and Reference Guide (MK-92RD100).

Table 5.1 lists potential error conditions during SGI<sup>™</sup> IRIX<sup>®</sup> installation and configuration and provides instructions for resolving each condition. If you are unable to resolve an error condition, please contact your Hitachi Data Systems representative for help, or call the Hitachi Data Systems Support Center for assistance.

| Error Condition                                                 | Recommended Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| The logical devices are not recognized by the system.           | Make sure that the READY indicator lights on the 9900V subsystem are ON.<br>Make sure that the fibre cables are correctly installed and firmly connected.<br>Make sure that the LUNs are properly configured. The LUNs for each target ID must start<br>at 0 and continue sequentially without skipping any numbers.                                                                                                                                                                       |  |  |
|                                                                 | Make sure that the SCSI IDs (unit IDs) on each bus are unique. Do not connect two devices with the same SCSI ID on the same bus.                                                                                                                                                                                                                                                                                                                                                           |  |  |
| The SGI™ system does not reboot<br>properly after hard shutdown | If the SGI <sup>™</sup> system is powered off without executing the shutdown process, wait three minutes before restarting the SGI <sup>™</sup> system. This allows the 9900V's internal time-out process to purge all queued commands so that the 9900V is available (not busy) during system startup. If the SGI <sup>™</sup> system is restarted too soon, the 9900V will continue trying to process the queued commands, and the SGI <sup>™</sup> system will not reboot successfully. |  |  |

#### Table 5.1 Troubleshooting

#### 5.2 Calling the Support Center

If you need to call the Hitachi Data Systems Support Center, make sure to provide as much information about the problem as possible, including the circumstances surrounding the error or failure and the exact content of any error messages displayed on the host system(s). Please note the reference codes and severity levels of the recent 9900V SIMs.

The worldwide Hitachi Data Systems Support Centers are:

- Hitachi Data Systems North America/Latin America San Diego, California, USA 1-800-348-4357
- Hitachi Data Systems Europe Contact Hitachi Data Systems Local Support
- Hitachi Data Systems Asia Pacific North Ryde, Australia 011-61-2-9325-3300

### Appendix A SCSI TID Map for Fibre-Channel Adapters

When an arbitrated loop (AL) is established or re-established, the port addresses are assigned automatically to prevent duplicate TIDs. With the SCSI over fibre-channel protocol (FCP), there is no longer a need for target IDs in the traditional sense. SCSI is a bus-oriented protocol requiring each device to have a unique address since all commands go to all devices. For fibre channel, the AL-PA is used instead of the TID to direct packets to the desired destination. Unlike traditional SCSI, once control of the loop is acquired, a point-to-point connection is established from initiator to target. To enable transparent use of FCP, the SGI<sup>™</sup> IRIX<sup>®</sup> system "maps" a TID to each AL-PA.

The host maps SCSI protocol to fibre-channel protocol and detects and accesses fibreconnected devices using device files (/dev/dsk/c\*t\*d\* and /dev/rdsk/c\*t\*d\*) in the same way as for SCSI-connected devices. The device files for fibre-connected devices are configured in a different way than SCSI-connected devices, because fibre supports 126 addresses per path while SCSI supports 16 TIDs per path.

Table A.1 identifies the fixed mappings between the TID (drive) values assigned by the IRIX<sup>®</sup> system and the FC native addresses (AL\_PA/SEL\_ID) for FC adapters. The controller number (the **dks** value in /dev/dsk/dks\*d\*l\*s\*) depends on the server configuration, and a different value is assigned per each column of Table A.1.

*Note:* The mapping defined in Table A.1 cannot be guaranteed under the following conditions:

- When 9900V devices and other types of devices are connected in the same loop,
- When information for unused devices remains in server system, or
- When multiple ports participate in the same arbitrated loop.

| AL-PA | T value |
|-------|---------|-------|---------|-------|---------|-------|---------|
| EF    | 0       | CD    | 16      | B2    | 32      | 98    | 48      |
| E8    | 1       | CC    | 17      | B1    | 33      | 97    | 49      |
| E4    | 2       | СВ    | 18      | AE    | 34      | 90    | 50      |
| E2    | 3       | CA    | 19      | AD    | 35      | 8F    | 51      |
| E1    | 4       | C9    | 20      | AC    | 36      | 88    | 52      |
| E0    | 5       | C7    | 21      | AB    | 37      | 84    | 53      |
| DC    | 6       | C6    | 22      | AA    | 38      | 82    | 54      |
| DA    | 7       | C5    | 23      | A9    | 39      | 81    | 55      |
| D9    | 8       | C3    | 24      | A7    | 40      | 80    | 56      |
| D6    | 9       | BC    | 25      | A6    | 41      | 7C    | 57      |
| D5    | 10      | BA    | 26      | A5    | 42      | 7A    | 58      |
| D4    | 11      | B9    | 27      | A3    | 43      | 79    | 59      |
| D3    | 12      | B6    | 28      | 9F    | 44      | 76    | 60      |
| D2    | 13      | B5    | 29      | 9E    | 45      | 75    | 61      |
| D1    | 14      | B4    | 30      | 9D    | 46      | 74    | 62      |
| CE    | 15      | B3    | 31      | 9B    | 47      | 73    | 63      |

 Table A.1
 Fibre Port Addressing (continues on next page)

| AL-PA | T value |
|-------|---------|-------|---------|-------|---------|-------|---------|
| 72    | 64      | 55    | 80      | 3A    | 96      | 23    | 112     |
| 71    | 65      | 54    | 81      | 39    | 97      | 23    | 113     |
| 6E    | 66      | 53    | 82      | 36    | 98      | 1F    | 114     |
| 6D    | 67      | 52    | 83      | 35    | 99      | 1E    | 115     |
| 6C    | 68      | 51    | 84      | 34    | 100     | 1D    | 116     |
| 6B    | 69      | 4E    | 85      | 33    | 101     | 1B    | 117     |
| 6A    | 70      | 4D    | 86      | 32    | 102     | 18    | 118     |
| 69    | 71      | 4C    | 87      | 31    | 103     | 17    | 119     |
| 67    | 72      | 4B    | 88      | 2E    | 104     | 10    | 120     |
| 66    | 73      | 4A    | 89      | 2D    | 105     | 0F    | 121     |
| 65    | 74      | 49    | 90      | 2C    | 106     | 08    | 122     |
| 63    | 75      | 47    | 91      | 2B    | 107     | 04    | 123     |
| 5C    | 76      | 46    | 92      | 2A    | 108     | 02    | 124     |
| 5A    | 77      | 45    | 93      | 29    | 109     | 01    | 125     |
| 59    | 78      | 43    | 94      | 27    | 110     |       |         |
| 56    | 79      | 3C    | 95      | 26    | 111     |       |         |

Table A.1 Fibre Port Addressing (continued)

### Appendix B Online Device Installation

This appendix provides instructions for online installation of new devices. After initial installation and configuration of the 9900V subsystem, additional devices can be installed or de-installed online without having to restart the SGI<sup>m</sup> system. These procedures are to be performed after logging in as a **super-user**.

Figure B.1 shows the two commands that must be executed to cause the SGI<sup>m</sup> IRIX<sup>®</sup> system to recognize newly added targets. Use the **scsiha** -**p** # command (# is the controller number) to scan the existing controller for new devices. Use the **ioconfig** -**f** /**hw** command to add the new device information to the hardware graph.

| # scsiha —p #     | $\leftarrow$ Probe controller, where # is the controller number.    |
|-------------------|---------------------------------------------------------------------|
| # ioconfig -f /hw | $\leftarrow$ Update the hardware graph with new device information. |

Figure B.1 Recognizing New Devices Installed Online

## Acronyms and Abbreviations

| AL<br>AL-PA                             | arbitrated loop<br>arbitrated loop physical address                                                                                                               |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTQ<br>CVS<br>CXFS™                     | command tag queuing<br>custom volume size<br>clustered version of XFS™ file system                                                                                |
| EFS<br>ESCON <sup>®</sup><br>ExSA™      | IRIX <sup>®</sup> standard file system<br>Enterprise System Connection (IBM trademark for optical channels)<br>Extended Serial Adapter™                           |
| FC<br>FCA<br>FC-AL<br>FCP<br>fx         | fibre-channel<br>fibre-channel adapter<br>fibre-channel arbitrated loop<br>fibre-channel protocol<br>IRIX <sup>®</sup> disk utility                               |
| GB<br>Gbps                              | gigabyte<br>gigabits per second                                                                                                                                   |
| 1/0, 10                                 | input/output                                                                                                                                                      |
| kB                                      | kilobytes                                                                                                                                                         |
| LDEV<br>LU<br>LUN<br>LUSE<br>LVI<br>LVM | logical device<br>logical unit<br>logical unit number, logical unit<br>LUN Expansion<br>Logical Volume Image<br>Logical Volume Manager, logical volume management |
| MB                                      | megabytes                                                                                                                                                         |
| OFC                                     | open fibre control                                                                                                                                                |
| P-P<br>PA<br>PC                         | point-to-point<br>physical address<br>personal computer system                                                                                                    |
| RAID                                    | redundant array of independent disks                                                                                                                              |
| SCSI<br>SGI™<br>SIM<br>SNMP<br>SVP      | small computer system interface<br>Silicon Graphics, Incorporated<br>service information message<br>simple network management protocol<br>service processor       |
| TID                                     | target ID                                                                                                                                                         |

- VLL Virtual LVI/LUN
- WWN worldwide name
- XFS<sup>™</sup> IRIX<sup>®</sup> extended file system
- XLV extended logical volume manager