
1

AT91 Library

Background
The AT91 library is a set of C and assembly source and project files aimed at helping
AT91 customers get started quickly with the AT91 series microcontrollers.

The AT91 library contains:

• Header files for defining the AT91M40400 in C language

• Assembly Include files defining the AT91M40400 in ARM® Thumb® assembly
language

• Examples of how to access the AT91M40400 peripherals

• Project Template for the AT91EB01 and AT91DB01

• Project examples to start up

• Application Notes source files

• Performance benchmarks

All delivered sources are free of charge and can be copied or modified without any
authorization.

The software is delivered “as is” without warranty or condition of any kind, either
express, implied or statutory. This includes without limitation any warranty or condition
with respect to merchantability or fitness for any particular purpose, or against the
infringements of intellectual property rights of others.

Getting Started with the AT91 Library
In the following, it is assumed that the ARM Software Development Toolkit V2.11a or
later has been installed, that there are no default options for the APM (ARM Project
Manager) tools, and that the directory “Bin\Config” of the ARM setup is empty (except
“readme.txt”).

Building the Library
Copy the AT91 library (complete folder and sub-folder) onto your hard disk in a direc-
tory referred to in the following as <MyFolderAT91>.

Copy/move the files from the directory “<MyFolderAT91>\Template” into the directory
“Template” of the ARM SDT setup.

Start the ARM Project Manager (APM).

Open the project “AT91_L16” in the directory “<MyFolderAT91>\Library” and build the
16-bit THUMB library.

Open the project “AT91_L32” in the directory “<MyFolderAT91>\Library” and build the
32-bit ARM library.

Creating a Project
Create a folder (labelled in the following as <MyProject>) in the directory
“<MyFolderAT91>\Work”.

Open the ARM Project Manager.

AT91
ARM Thumb ®
Microcontrollers

Application Note

Rev. 1203A–11/98

AT91 Library2

Create a new project and select “EB01 Interworking Image”
(or “DB01 Interworking Image” if applicable).

Locate the project in <MyProject>.

Name the project and press OK.

The “EB01 Interworking Image” has 4 variants:

• “EB01SramICE” to generate an application running in
SRAM and debugged with the Embedded ICE.

• “EB01SramAngel” to generate an application running in
SRAM and debugged with the Angel Debug Monitor.

• “EB01Flash” to generate an application running in Flash.

• “EB01FlashSymbol” to generate symbols corresponding
to the “EB01Flash” binary image.

Identical variants are available in the “DB01 Interworking
Image” template, but the target memory is SSRAM rather
than SRAM.

Now add the required initialization files to the project that
will start up the application depending on the variant envi-
ronmen t . These f i l es are i n the d i rec to ry
<MyFolder\Library\Init> and their names are:

• “in_reset.s”

• “in_main.c”

• “in_eb01.s” or “in_db01.s” depending on the board
targeted.

Add the application source files. The single constraint is
that the main function of the project must be declared as:

int MainApplication (void)

Build the project.

Start the debugger and configure it to communicate with
the target using the Remote_A DLL (Add the driver if not
already done).

Load the image conforming to the board and the debug
system. For example, if the user is working in the SRAM of
the AT91EB01 and the Embedded ICE, the
“<MyProject>\EB01SramICE\<MyProject>.axf” image
needs to be loaded.

AT91 Library Contents
The AT91 Library hierarchy is described in Figure 1 below.

Figure 1. AT91 Library Hierarchy

Notes: 1. The directories “lib16” and “lib32” in “<MyFolderAT91>\Library” are duplicated in the directories “40400_16” and 40400_32”.
This is in order to support future devices.

2. The folder <MyFolderAT91> contains 3 dummy files: “asm_path.s”, “c_path.c” and “c_path.c”. These can be added to a
project in order to define the path of <MyFolderAT91> whatever the path of the project file may be.

<MyFolderAT91>

Include

Library

Init

lib16

lib32

Tools

Template

Examples

Work

<MyProject>

<ARM211a>

Template

AT91 Library

3

Include Directory
This directory contains:

• C header files with the extension “.h”

• Assembly include files with the extension “.inc”

• Assembly macro definition files with the extension “.mac”

There are two files, one C header file and one assembly
include file, to describe each of the following:

• The ARM7TDMI™ core

• Each AT91 peripheral

• The AT91 internal memories

• The AT91EB01 evaluation boards

• The AT91DB01 development board

For example, the USART is described in C by the file
“usart.h” and in assembly by “usart.inc”.

Only one macro file is present: “irq.mac”. It defines the
“IRQ_ENTRY” and “IRQ_EXIT” macro used by the assem-
bly interrupt handlers.

The File “std_c.h”
The file “std_c.h” defines some standard data types
(unsigned char, unsigned short, unsigned integer), the
default values for Boolean types (TRUE, FALSE), and the
type of the peripherals user interface registers as:

#define at91_reg volatile unsigned int

This means that all registers of the AT91 are 32 bits wide
and their values can change at any time. This last point
avoids the C compiler optimizer effect when reading the
AT91 registers.

The “std_c.h” file must be included before using one of the
peripheral header files.

Peripheral Definitions
Each peripheral of the AT91 is described by a C structure
composed of registers and an assembly list of offsets cor-
responding to registers. Thus modular software architec-
ture working on any peripheral of the same type can
operate on a peripheral identified only by its base address.

At the end of the definition file, the peripheral base
addresses are defined with condit ional compilation
depending on the device being used.

The File “prior_irq.h”
This file defines default priority levels for each interrupt
source. These default levels are used by the C function ini-
tializing the interrupt of each peripheral. In case the priority
levels of interrupt sources need to be redefined, modify this
file.

Library Directory
This directory contains C and assembly files showing
examples of how to use the AT91 peripherals.

For the most part, the peripheral access functions are writ-
ten in C and associated with an assembly file when the
peripheral needs interrupt handling.

The name o f t he C f i le has the fo rma t
“lib_<periph_name>.c”. If an assembly file exists, the name
has the format “irq_<periph_name>.s”. For example, the
USART accesses are shown in the file “lib_usart.c” and the
associated interrupt handling in the file “irq_usart.s”.

There are two project files, one to create an ARM library
file, the other one to create the same library in Thumb. The
object files and the resulting library file (“.alf”) are respec-
tively in the directory “lib32” and “lib16”.

The “Library” directory also contains the “Init” sub-directory.
This sub-directory contains source files to be included by
project and which give a boot sequence depending on the
debug system being used and the target board.

Library Inclusion
The AT91 library uses a C source file inclusion system.
Thus it is not necessary to declare a function prototype in
another place than the function declaration. Using the
“_REFERENCE” and “CORPS” labels performs this sys-
tem.

Each function is declared with the “_REFERENCE” label
and the body of each function is conditionally compiled if
“CORPS” label is defined.

When the C library file is compiled, the “_REFERENCE” is
removed and “CORPS” is declared. The complete func-
tions are generated.

When another file needs to use the functions from a library
file, it includes this C file by declaring “_REFERENCE” to
be replaced by “extern” and by un-defining “CORPS”. The
result is only prototyping the functions.

The main advantage of this system is that it enables the
source to be maintained. It is used for the library C func-
tions, but can be generalized for all other C source files.

Tools Directory
This directory contains command files for the debugger and
a binary file transmitter from the PC to a target board.

It also contains subdirectories:

• “FlashPgm” which contains a Flash downloader for the
target boards

• “booteb01” which contains the EB01 boot sources

• “bootdb01” which contains the DB01 boot sources

The boot source files are provided as reference.

Command Files for the Debugger
It is useful to perform complex operations on the chip
peripherals from the debugger. The most useful ones are:

• Chip reset using the watchdog to return in Reboot mode.
This tests the boot sequence after having downloaded it.

AT91 Library4

• EBI configuration and remap command. For example,
this allows access to external memories on virgin boards
(first programming while out of production).

The command file “reset_wd” performs an internal reset by
using the watchdog.

To run it, enter the following line in the command window of
the debugger:

obey <MyFolderAT91>\Tools\reset_wd

The command files “ebi_eb01” and “ebi_db01” perform
default EBI configuration followed by the remap command
for the AT91EB01 and the AT91DB01 respectively . Values
programmed are those used for the standard boot
sequence.

To run it, enter one of the following lines in the command
window of the debugger:

obey <MyFolderAT91>\Tools\ebi_eb01

obey <MyFolderAT91>\Tools\ebi_db01

One of these two files may be edited to be adapted to the
application board devices.

Binary Transmitter
The AT91EB01 standard boot can run an SRAM down-
loader from a serial port. In this case, the data received are
directly saved in SRAM at address 0x0200 0000 and then
the control is given at this address (refer to the AT91EB01
User Guide for a complete sequence description if you
need to use this feature). Note that the same feature is pro-
vided by the AT91DB01 at the address
0x0010 0000.

As data are directly stored in the SRAM, they have to be
sent in a binary format. This is not possible from the debug-
ger nor from other standard PC tools. For this reason,
users are provided with the PC program “Bincom.exe”
which enables transmission of a binary image on a pro-
grammable serial COM at a programmable speed.

Flash Downloader
The AT91EB01 has one 64K bytes x 16 Flash device.

The AT91DB01 has two 256K bytes x 8 Flash devices,
emulating a 16-bit device.

The subdirectory “FlashPgm” contains a Flash downloader
project. It supports one variant for each target board.

This Flash downloader is a standard application running on
the target and using the semihosting feature to read the
image file to be programmed on the host hard disk drive. It
must have as arguments the name of this file and the
address where programming should begin.

For example, to program the project “led_blink” in the
AT91EB01 Flash, enter the following lines in the command
window:

$top_of_memory=0x02200000

load <MyFolderAT91>\Tools\FlashPgm\At91eb01\

FlashPgm.axf

<MyFolderAT91>\Exaples\led_blink\Binary\

led_blink.axf 0x01100000

Projects and Variants Description
The AT91 Library proposes two project templates:

• EB01 Interworking Image

• DB01 Interworking Image

These project templates can be chosen when you create a
project from the ARM Project Manager in the “Type” field of
the “New Project” window. For this, you need to copy the
delivered project template (files “at91eb01.apj” and
“at91db01.apj”) from the directory “<MyFolderAT91>\Tem-
plate” to the “Template” folder of the ARM Software Toolkit.

Both templates are made from the standard template
“THUMB/ARM Interworking Image” and are adapted for the
AT91-based board use.

Variants and Link Addresses
The templates propose one variant per target memory
available. Each variant defines a link address of the image
to be generated.

The SRAM (on AT91EB01) or SSRAM (on AT91DB01)
variants depend on the debug systems used, because the
Angel Debug Monitor occupies an address space in these
memories.

The template “EB01 Interworking Image” proposes the fol-
lowing variants:

Table 1.

Target Memory Debug System Variant to Use Link Address

SRAM Angel EB01SramAngel 0x0201 8000

SRAM ICE EB01SramICE 0x0200 0000

Flash - EB01Flash 0x0100 0000

AT91 Library

5

The template “DB01 Interworking Image” proposes the following variants:

The Flash variant generates a binary image. In this case,
another template (with name finishing by “FlashSymbol”)
generates the corresponding symbol table.

Initialization Labels
The init ialization sequence defined in the directory
“<MyFolderAT91>\Library\Init” depends on the target board
and on the debug system used. These codes are condition-
ally assembled/compiled depending on labels defined by
the template and the variants.

Target Boards
The two target boards supported and their main features
are:

• The AT91EB01
- Contains a Flash connected at Chip Select 0.

- Chip Select 1 drives a Static RAM device of up to 4
Mbits depending on the version of the board.

- A standard boot sequence is programmed in the
lower 64K bytes Flash page, which is write-protected. It
is executed only if SW1 is on the “LOWER_MEM” posi-
tion.

- The user can download his own boot sequence in the
upper 64K bytes Flash page and execute it by switch-
ing SW1 to the “UPPER MEM” position and then by
generating a reset.

• The AT91DB01
- Contains an EPROM connected at Chip Select 0.

- Chip Select 1 drives a Flash device.

- The boot sequence branches to the Flash start
address if LK9 is on.

- The user cannot test his boot sequence in any other
way than by programming a new Boot ROM device.

- The main advantage of this board is that the user is
able to emulate internal memory extensions with an
external Synchronous Static RAM and to connect a
Logic Analyzer to the internal busses.

- The applications are debugged in the SSRAM
address space.

Debug System
The boot sequence provided with the AT91 Library sup-
ports three debug systems:

• The Angel Debug Monitor
- EBI is configured and Angel itself performs the
remap.

- Angel’s code is stored in Flash and is copied into the
SRAM at startup. Additional memory is required to
store its data.

- The undefined Instruction exception is used to handle
breakpoints.

- Communications with the debugger requires the
USART 0.

- The USART driver uses the Advanced Interrupt Con-
troller.

- ARM interrupt vectors are initialized.

- Stacks are defined. Only the User/System stack can
be redefined by the user. Other stacks must not be
modified unless Angel operations are disturbed.

• The Embedded ICE
- No address space is needed. Only the semihosting
features needs some stack space while operating.

- If a valid boot sequence has been run before the core
is stopped by the ICE, the EBI is configured and the
remap is performed.

- The ARM interrupt vector is not initialized to support
vectoring features.

- The stacks are undefined with the exception of the
User/System one which is set to “$top_of_memory”.

• Debug on Binary
- The application is programmed in non-volatile mem-
ory. It must be generated with a binary format in order
to be programmed.

- A complete startup sequence must be run. This
means EBI configuration, stacks and vectors setting
and C data initialization must be performed.

- The debug information is not included in the binary
image and has to be loaded separately from the Sym-
bol variant.

Table 2.

Target Memory Debug System Variant to Use Link Address

SSRAM Angel DB01SramAngel 0x0011 8000

SSRAM ICE DB01SramICE 0x0010 0000

Flash - DB01Flash 0x0200 0000

AT91 Library6

Device Labels
The project templates define a device identification label,
AT91M40400 . It is defined for both C compilers and
ARM/Thumb assembler. This will allow support for future
devices in the AT91 family.

Target Board Labels
The project templates define a target board identification
label.

For the “EB01 Interworking Image” project template, this
label is AT91EB01 .

For the “DB01 Interworking Image” project template, this
label is AT91DB01 .

Debug System Labels
The AT91-based board project templates define 3 variants
each depending on the debug system. For each of these
variants, a debug system identification label is defined.

The label AT91_DEBUG_NONE is defined when the user
wants to generate a final binary version. This is the case for
the “EB01Flash” and “DB01Flash” variants. To make sure
symbols are corresponding, it is also defined for the vari-
ants “EB01FlashSymbol” and “DB01FlashSymbol”.

The label AT91_DEBUG_ICE is defined when the user
wants to use an Embedded ICE-based debug system. This
is the case for the “EB01SramIce” variant of the “EB01
Interworking Image” or “DB01SsramIce” variant of the
“DB01 Interworking Image”.

The label AT91_DEBUG_ANGEL is defined when the user
wants to use an Angel-based debug system. This is the
case for the “EB01SramAngel” variant of the “EB01 Inter-
working Image” or “DB01SsramAngel” variant of the “DB01
Interworking Image”.

Interrupt Handling
Scope
Interrupt Entry and Exit Macros
Interrupt handlers are given as an example. All of them use
the IRQ_ENTRY and IRQ_EXIT routines defined in the file
“irq.mac” stored in the directory <MyFolderAT91>\Include.

The sequence defined by <IRQ_ENTRY> is:

• Adjust the Link Register.

• Save it in the IRQ stack.

• Save the SPSR (Saved Program Status Register) and r0
in the IRQ stack.

• Switch to System Mode and Clear I.

• Save the registers used(at least r0 - r3 and r12) and
r14(user).

The sequence defined by <IRQ_EXIT> is:

• Restore the registers used and r14(user).

• Switch back to IRQ mode and Set I.

• Perform a write to the End of Interrupt Command
Register.

• Restore r0 and SPSR.

• Restore Link Register directly in the PC.

Between “IRQ_ENTRY” and “IRQ_EXIT”, a C handler is
called. Its address is saved by the C function enabling the
interrupt. Depending on the interrupt to be handled, the
search for the corresponding handler can be performed in
assembler.

Switch to System Mode
The assembler interrupt handler calls a C handler. At this
moment, the Link Register is used to save the return
address to the assembler handler. However, if a nested
interrupt occurs (this may occur because of priority man-
agement), the Link Register is overwritten by the save of
the Program Counter.

If the user wishes to support nested interrupts, a switch to
System Mode must be made. The System Mode defined by
the ARM processor uses the same register bank as the
User Mode. Thus the Link Register must be saved because
it may be the return address of a Branch with Link instruc-
tion. Therefore the assembler handler saves the register r0
in order to be used during “IRQ_EXIT” to modify the CPSR
(Current Program Status Register).

The switch to System Mode enables the IRQ stack size to
be known. This is equivalent to the number of priority levels
of the AIC(8) multiplied by the number of words saved by
the assembler handler(3). The User Stack is limited to 3 x 4
x 8 = 96 bytes.

Peripheral Interrupts Handling
The interrupt management at the AIC level is described in
the file “lib_aic.c”. Interrupt sources can be enabled with
the C function “enable_interrupt” and disabled with the C
function “disable_interrupt”.

USART Interrupt Handling
The USART interrupt management is described in the file
“irq_usart.s”. This defines an assembler interrupt handler
for each USART. These interrupt handlers allow manage-
ment of three different types of interrupt from each USART:
error, receive and transmit. A mask and a handler pointer
stored in the table “USARTHandlerTable” identify each.

When an interrupt occurs, the Status Register of the
USART is read and then masked with the Interrupt Mask
Register. The result is then masked with each of the three
masks read from the table. When a result is not zero, the
corresponding handler is executed.

Masks and handlers are definable with the C function
“enable_usart_irq”, defined in the file “lib_usart.c”.

PIO Interrupt Handling
The PIO interrupt management is described in the file
“irq_pio.s”. This defines the assembler interrupt handler of

AT91 Library

7

the PIO controller. The C handlers for each PIO line are
stored in the table “PIOHandlerTable”. The assembly inter-
rupt handler searches for each PIO line interrupt. If present,
the corresponding handler is called with the PIO Controller
base address as argument and a mask identifying the PIO
line.

The PIO lines are looked for byte by byte to increase
latency time on the highest bits.

The C PIO interrupt handlers are definable with the C func-
tion “enable_pio_interrupt” defined in the file “lib_pio.c”.

Timer Counter Interrupt Handling
The Timer Counter interrupt management is described in
the file “irq_tc.s”. This defines one assembler interrupt han-
dler for each Timer Counter channel that directly calls a C
handler.

The C handler addresses are stored in the table “TCHand-
le rTab le” and are de f inab le w i th the C funct ion
“enable_timer_irq” defined in the file “lib_tc.c”.

