
1

Interrupt Management: Auto-vectoring and
Prioritization

Background
The AT91 is based on the ARM7TDMI microcontroller core. It features the
Advanced Interrupt Controller (AIC), an 8-level priority, individually maskable, vec-
tored interrupt controller.
This microcontroller core implements two physically independent sources of interrupt:

• FIQ - Fast Interrupt

• IRQ - Normal Interrupt

Each of these interrupts has a corresponding vector, at addresses 0x00000018 for the
IRQ and 0x0000001C for the FIQ.

The AIC is connected to the NFIQ (Fast Interrupt Request) and the NIRQ (Standard
Interrupt Request) inputs of the ARM7TDMI processor.

The processor’s NFIQ line can only be asserted by the external fast interrupt request
input: FIQ (multiplexed with the PIO P12). Therefore, when an FIQ occurs, it is not
necessary to de-multiplex the handler according to the cause of the interrupt (it is
assumed that there is no multiplexing added by the external hardware). The FIQ man-
agement code can be reached either directly from the vector (0x0000001C), or by
using the Fast Interrupt Vector Register (AIC_FVR) as described in the datasheet of
the AT91 products.

The NIRQ line can be asserted by the interrupts generated by the on-chip peripherals
and the external interrupt request lines: IRQ0 to IRQ2. Therefore it is necessary to
manage a prioritization when several interrupt sources are asserted at once and to
de-multiplex the handler according to the source of the interrupt.

AT91 Series
ARM® Thumb ®
Microcontrollers

Application Note

Rev. 1168A–10/98

AT91 Series2

Auto-Vectoring
This feature consists of a set of registers which provide the address of the handler to execute according to the source of an
interrupt.

Each interrupt source is associated with a Source Vector Register (AIC_SVR1 - AIC_SVR31) which contains the address
of the function corresponding to the active interrupt. When the Interrupt Vector Register (AIC_IVR) is read, it automatically
returns the contents of the source vector register corresponding to the active interrupt with the highest priority. Note that
AIC_IVR is located at address 0xFFFFF100.

During the boot sequence and before enabling the interrupts, the software must:

1. Initialize the source vector registers for each interrupt

2. Initialize the IRQ vector at address 0x00000018 with the following code:

ldr pc,[pc,#-0xF20]

When an interrupt occurs, the core performs the following (see the ARM Architectural Reference Manual):

R14_irq = address of next instruction to be executed + 4

SPSR_irq = CPSR

CPSR[5:0] = 0b010010 Interrupt mode

CPSR[6] = unchanged Fast interrupt status is unchanged

CPSR[7] = 1 Normal interrupts disabled

PC = 0x00000018

When the instruction at the address 0x00000018 is executed, the effective address is:

0x00000020 - 0x0F20 = 0xFFFFF100

(0x00000020 is the value of the PC when the instruction at address 0x18 is executed)

This causes the core to load the PC with the value read in AIC_IVR which returns the value of AIC_SVR corresponding to
the active interrupt. This has the effect of directly jumping to the correct interrupt service routine.

Also note that when the AIC_IVR is read, the AIC does the following:

• deasserts the NIRQ line on the core

• determines which pending interrupt has the highest priority

• pushes the level of this interrupt in its internal hardware stack

• clears the interrupt if it is configured to be edge triggered

The interrupt level is popped when the End of Interrupt (EOI) is indicated to the AIC by a write in AIC_EOICR (see “Prioriti-
zation” on page 3).

AT91 Series

3

Prioritization
The NIRQ line is controlled by an 8-level priority encoder. Each source has a programmable priority level of 7 to 0. Level 7
is the highest priority and level 0 the lowest.

When the AIC receives more than one unmasked interrupt at a time, the interrupt with the highest priority is serviced first.
The interrupt management of the interrupt with the lower priority level is therefore delayed.

The AIC manages the prioritization by using an internal stack on which the current interrupt level is automatically pushed
when AIC_IVR is read, and popped when AIC_EOICR is written (any value). Between these two events, the software can
manage the state and the mode of the core in order to re-enable the IRQ line and to allow an interrupt with a higher priority.

When an interrupt is managed by the core, R14_irq and SPSR_irq are automatically overwritten without being saved: it is
mandatory to save these registers before re-enabling the IRQ line and to restore them before exiting the interrupt manage-
ment routine. Moreover, if the interrupt treatment performs function calls (Branch with Link), R14_irq is used. In this case,
IRQ can not be re-enabled while the core is in IRQ mode. It is mandatory to first change the mode of the core. In order to
keep all exceptions available, the SYSTEM mode must be used. Therefore, the stack used during the interrupt execution is
the same as that used out of the interrupt. This must be taken into account in the sizing of the SYSTEM/USER stack.

This is performed as follows:

1. Save R14_irq and SPSR_irq in the IRQ stack (current)

2. Set the mode bits in CPSR with the SYSTEM value (0b11111)

3. Re-enable IRQ by clearing bit I in CPSR

4. Execute the actions related to the interrupt

5. Disable IRQ by clearing bit I in CPSR

6. Set the mode bits in CPSR with the USER value (0b10000)

7. Restore R14_irq and SPSR_irq from the IRQ stack

Note that this sequence is automatically preceded by a read of AIC_IVR (see “Auto-Vectoring” on page 2) and must be fol-
lowed by a write in AIC_EOICR before exiting from the interrupt.

AT91 Series4

AT91M40400 Implementation
The implementation of the auto-vectoring is done by initializing the IRQ vector at address 0x0000018 with the following
instruction:

ldr pc,[pc,#-0xF20]

The implementation of the prioritization is described in the file “irq.mac” which is included in the folder “at91_include” of the
AT91 library (examples of use can be found in the files “irq_*.s” of the folder “at91_lib”). This file includes 2 macros:

• IRQ_ENTRY which saves the registers and switches to SYSTEM mode

• IRQ_EXIT which switches back to IRQ mode, restores the registers and exits from the interrupt after acknowledging the
current interrupt by writing in AIC_EOICR.

The standard format of an interrupt handler is:

1. Auto-Vectoring: instruction “ldr pc,[pc,#-0xF20]”

2. Validate the nested interrupts: macro-definition IRQ_ENTRY

3. Perform interrupt treatment (e.g. for the USART transmitter, write a new byte in the US_THR)

4. Disable the nested interrupts: macro-definition IRQ_EXIT

IRQ_ENTRY Macro Definition
MACRO

IRQ_ENTRY $reg

;- Adjust and save LR of current mode in current stack

sub r14, r14, #4

stmfd sp!, {r14}

;- Save SPSR and r0 in current stack

mrs r14, SPSR

stmfd sp!, {r0, r14}

;- Read Modify Write the CPSR to Enable the Core Interrupt

;- and Switch in SYS Mode (same LR and stack than USR Mode)

mrs r14, CPSR

bic r14, r14, #I_BIT

orr r14, r14, #ARM_MODE_SYS

msr CPSR, r14

;- Save used registers and LR_usr in the System/User Stack

stmfd sp!, {r1-r3, $reg, r12, r14}

MEND

The parameter “$reg” allow the list of the registers used by the interrupt treatment to be pushed on the SYSTEM/USER
stack by using the instruction which pushes R14_User. This list must be the same for the IRQ_EXIT call.

Note that in this application note, all registers defined as “scratched” by APCS (r0, r1, r2, r3, r12) are saved by IRQ_ENTRY
and restored by IRQ_EXIT.

AT91 Series

5

IRQ_EXIT Macro Definition
MACRO

IRQ_EXIT $reg,

;- Restore used registers and LR_usr from the System/User Stack

ldmfd sp!, {r1-r3, $reg, r12, r14}

;- Read Modify Write the CPSR to disable interrupts

;- and to go back in the mode corresponding to the exception

mrs r0, CPSR

bic r0, r0, #ARM_MODE_SYS

orr r0, r0, #I_BIT:OR:ARM_MODE_IRQ

msr CPSR, r0

;- Mark the End of Interrupt on the interrupt controller

ldr r0, = AIC_BASE

str r0, [r0, #AIC_EOICR]

;- Restore SPSR_irq and r0 from the IRQ stack

ldmfd sp!, {r0, r14}

msr SPSR, r14

;- Restore ajusted LR_irq from IRQ stack directly in the PC

ldmfd sp!, {pc}^

MEND

The IRQ Stack
The IRQ stack pointer (R13_irq) must be initialized at the top (upper address) of a reserved space. The size needed for this
stack is 12 bytes (3 words for registers r0, r14 and SPSR) per level used in the application. If all levels are used, the stack
space must be 96 bytes.

Constants
The constants used in this application note are as follows:

ARM_MODE_SYS EQU 0x1F

I_BIT EQU 0x80

AIC_BASE EQU 0xFFFFF000

AIC_EOICR EQU 0x0130

AT91 Series6

AT91 Series

7

