
Rev. 1169A–10/98

AT91 Series
ARM® Thumb ® 
Microcontrollers

Application Note
Software DMA Implementation

Introduction
A DMA (Direct Memory Access) Controller allows fast data transfers between memo-
ries without using the CPU. The transfer is activated by an external event. The control
signals and the address and data buses are managed by the DMA controller.

The AT91M40400 does not feature a DMA controller as a peripheral. However, it can
be implemented by software by using the load multiple (ldm) and store multiple (stm)
instructions (refer to the “ARM Architectural Reference Manual”).

This application note proposes two different ways to implement a software DMA using
the ARM Fast Interrupt (FIQ) as the external event. The code has been designed to
reduce the number of instruction fetches as much as possible.
1



Theory of Operation
The principle of DMA is that an external event causes a fast memory copy. In this case the external event is the Fast Inter-
rupt pin (FIQ) since the FIQ mode on the ARM7TDMI™ processor has banked registers (r8 to r14) which do not need to be
saved before being used in FIQ mode. These registers are initialized before enabling the FIQ interrupt, then directly used
when the external event occurs.

This application note describes two ways to implement a software DMA. Both implementations make the transfer by split-
ting the block to be transferred into packets of 4 words.

Note : In this document 1 packet = 4 words; 1 word = 4 bytes
• DMA Turbo : Copies one packet (4 words) from a source buffer to a destination buffer at each FIQ interrupt. 

• DMA Channel : Copies the number of packets (4 words) defined by the user from a source buffer to a destination buffer
at each FIQ interrupt, thus freeing the core between packets.

As the FIQ interrupt is used, the DMA must be able to access the banked registers. This can only be done by switching to
FIQ mode and only if the CPU is in privileged state (any mode except User Mode). This application note assumes that the
user function calls are performed while the CPU is in privileged state. It does not describe how to switch from unprivileged
to privileged state. This can be done on another level by using the “swi” instruction of the ARM core or the Advanced Inter-
rupt Controller features allowing an interrupt entry to be forced. In the last case, FIQ or AIC’s software interrupt can be
forced to set up software DMA. 

DMA Turbo
The DMA Turbo allows 1 packet (4 words) to be transferred at each FIQ interrupt from a source buffer to a destination
buffer. Source and destination buffer pointers are post-incremented after each transfer. 

The main advantage to this implementation is that no registers need to be saved. It is also a faster way to transfer data than
the DMA Channel implementation. 

Table 1.  Source Files

Files Contents

dma _turb.s Code source for DMA Turbo

dma_chnl.s Code source for DMA channel

dma.h DMA prototypes and structures for application use

arm.inc ARM core definition

Table 2.  Registers Used

Register Parameter

r14 Link register - return address

r13 ‘dest_pt’ = Destination buffer pointer

r12 ‘src_pt’ = Source buffer pointer

r8 to r11 Transfer registers 
AT91 Series2



AT91 Series
User Functions
The functions used to manage the DMA Turbo are defined in dma_turb.c:

The DmaTurboSet  function initializes the FIQ banked registers for the DMA Turbo transfer, then enables the DMA transfer
by clearing bit F in the CPSR.

void DmaTurboSet (int *source, int *destination) 
source the source buffer pointer

destination the destination buffer pointer

Begin
| Switch to FIQ mode and save entry mode
| Memorize source buffer pointer (r12_fiq = 'src_pt') 
| Memorize destination buffer pointer (r13_fiq = 'dest_pt')
| Enable DMA (Clear bit F)
| Restore entry mode
End

The DmaTurboGet  function checks that the end of the transfer occurred (“size” words received), and, if it did, disables the
DMA transfer by setting bit F in the CPSR.

int DmaTurboGet (int * source, int size) returns the number of words already received

source the source buffer pointer at beginning

size the number of words to be copied

Begin
| Switch to FIQ mode and save entry mode
| Calculate number of transferred words 
| Disable DMA (Clear bit F) if number of transferred words >= size
| Restore entry mode
End

The DmaTurboFiq  function is activated by the FIQ (vector address 0x1C), and copies 4 words from source buffer to desti-
nation buffer.

void DmaTurboFiq (void) 
Begin
| *dest_pt <- *src_pt (multiple load and store 4 words with post increment)
End

Alternate Implementation
The DMA Turbo can be modified to transfer more than 4 words per FIQ. For this, the pair of instructions “ldm” and “stm”
(refer to the “ARM Architectural Reference Manual”) must be repeated as many times as necessary. Different types of
source and destination buffers can be supported by using the options of post/pre increment/decrement of these instruc-
tions.

It can also be modified to make the number of words to transfer defined by the caller. This has the advantage of allowing
the dynamic transfer size, but one register must be reserved for the count (e.g. r11). Therefore, only 3 registers are avail-
able for the transfer itself.

Table 3.  DMA Turbo User Functions

void DmaTurboSet (int *source, int *destination) Initialize the FIQ registers for the DMA transfer

void DmaTurboGet (int *source, int size) Check the end of the transfer

void DmaTurboFiq (void) FIQ treatment and DMA transfer
3



DMA Channel
The DMA Channel implementation copies the number of packets (4 words) defined by the user at each FIQ interrupt until
the remaining number of bytes is less than 1 packet (4 words). These remaining bytes are transferred at the following FIQ
interrupt, and the DMA is stopped by disabling the FIQ.

One inconvenience of this implementation is that non-banked registers are used. Therefore, it is mandatory to save these
registers before the transfer, and to restore them afterwards. 

The main advantage is that the size of the transfer is controlled, and there is no risk of overwriting the memory.

The block is copied from the source to the destination by boundaries of packets. When no more whole packets can be
transferred, the remaining bytes (less than 16) are transferred in a way which optimizes the number of fetches: 

• 2 words (8 to 15 remaining bytes)

• 1 word (4 to 7 remaining bytes)

• 1 half-word (2 or 3 remaining bytes)

• 1 byte (1 byte remaining)

The user can choose to increase, after each FIQ copy, the source pointer, the destination pointer, both pointers or neither.

Table 4.  Registers Used

Register Parameter

r14 Link register - return address

r13 Temporary buffer address

r12 Increment mask

r11 Number of packets to copy per FIQ

r10 Block size (byte number)

r9 Destination address

r8 Source address

r6 to r7 Working registers (must be saved and restored)

r0 to r3 Transfer registers (must be saved and restored)
AT91 Series4



AT91 Series
Type Definition
The DMA channel parameters are set through a structure named “dma_descriptor”. This type is defined in dma.h:

typedef struct dma_descriptor
{

u_char *src; // Source pointer
u_char *dest; // Destination pointer
u_int nb_bytes; // Total number of bytes to copy
u_int nb_packets; // Maximum number of packets to copy at each FIQ
u_int dma_mask; // DMA channel mask (INC_SRC and/or INC_DEST)

} dma_descriptor;

The user can choose whether or not to increase the source/destination pointers using the “dma_mask” field, the value of
which is an OR-combination of the constants INC_SRC and INC_DEST (These constants are defined in dma.h).

User Functions
The functions used to manage the DMA Channel are defined in dma_chnl.c:

The DmaChannelSet  function sets and enables the DMA Channel

void DmaChannelSet (dma_descriptor *dma_desc, int *buf); 
dma_desc pointer to the DMA descriptor

buf temporary buffer (7*4 bytes needed) to store non-banked used registers 

Begin
| Switch to FIQ mode and save entry mode
| r13_fiq <- temporary buffer pointer
| Load banked registers from the DMA descriptor
| Set default number of packets to transfer (1) if not defined by user
| Enable DMA (Clear bit F) if number of bytes to transfer > 0
| Restore entry mode
End

The DmaChannelGet  function returns the remaining number of bytes to be transferred

int DmaChannelGet(void) returns remaining number of bytes

Begin
| Switch to FIQ mode and save entry mode 
| Return number of bytes remaining to be transferred
| Restore entry mode
End

Table 5.  DMA Channel User Functions

void DmaChannelSet (dma_descriptor *dma_desc, int *buf) Initialize the FIQ registers for the DMA transfer

void DmaChannelGet (void) Get the count of remaining bytes to be transferred

void DmaChannelFiq (void) FIQ treatment and DMA transfer
5



The DmaChannelFiq  function is activated by the FIQ (vector address 0x1C), and copies r11 x 4 words from the <source>
to the <destination> if possible.

void DmaChannelFiq (void) 
Begin
| Save used registers in the temporary buffer
| Save source and destination
| While (nb_packets > 0) and (nb_bytes >= PACKET_SIZE)
| | Update nb_bytes by subtracting PACKET_SIZE from it
| | *dest <- *src (multiple load and store 4 words with post increment)
| | Decrement nb_packets
| EndWhile
| If (nb_packets == 0) (i.e. All blocks transferred)
| Then
| | === Copy last bytes to copy (< 16) ===
| | *dest <- *src
| | If needed, load and store multiple 2 words with post increment
| | If needed, load and store 1 word with post increment
| | If needed, load and store 1 half-word with post increment
| | If needed, load and store 1 byte with post increment
| | Clear nb_bytes
| | Disable DMA (SPSR.F <- 0)
| Endif
| Restore src (if not INC_SRC)
| Restore destination (if not INC_DEST)
| Restore used registers
End

Required Resources
Table 6.  DMA Turbo

Parameter Value

Code Size 20 words

Register Usage R8 to R14 (banked FIQ 
registers)

Peripheral Usage FIQ Interrupt

Table 7.  DMA Channel

Parameter Value

Code Size 51 words

Register Usage R8 to R14 (banked FIQ 
registers)

Peripheral Usage FIQ Interrupt
AT91 Series6



AT91 Series
Tips and Warnings for Both Types of DMA Implementation
Pointer Alignment
Source and destination pointers must always be word-aligned because of the use of load and store multiple instructions. If
this is not the case, a word-alignment must be performed, using an “AND” with the existing word in the memory to copy the
first non-aligned bytes.

FIQ Rate 
Since the DMA described in this application note performs the transfer of the packet(s) at the FIQ interrupt, it is necessary
to pace the FIQ at a rate defined by the application. 

This application note does not describe how to generate the rate, but it can easily be done by using a timer channel which
is cyclically triggered to generate a tick. An FIQ is then generated on each tick. The FIQ can be generated by configuring
source 0 to be edge triggered, and by setting bit 0 in the AIC_ISCR register to one (0x00000001). The port P12, multi-
plexed with FIQ, should be configured as a PIO in order to prevent the FIQ from being generated by an external event.

Another way is to configure the port P12 as a peripheral, and to make the external hardware generate the FIQ which can be
configured to be edge or level triggered.

In any case, the source 0 (FIQ) of the AIC must be configured (register AIC_SMR0) and enabled (register AIC_IECR).

Tips and Warnings for DMA Channel Implementation
Temporary Buffer
This application does not implement a stack management to save the registers. For this reason, a temporary buffer has
been chosen in order to save and restore the non-banked registers in the function DmaChannelFiq . Of course, this tempo-
rary buffer can also be performed by a stack management. In this case, the function DmaChannelSet  needs only the DMA
descriptor as a call parameter.

Pointer Incrementation
If the source and destination pointers are systematically incremented during the transfer, the command word with the
pointer management mask ptrMask is useless. In this case, the saving and conditional restoring of the source and destina-
tion pointers is also useless and the registers R6 and R7 are unused in the function DmaChannelFiq . As the mask is not
used, the register R12 is also unused in the function DmaChannelFiq  and can be used as the packet counter (in place of
R11 which must be restored).

This way only registers R0 to R3 in the function DmaChannelFiq  must be saved, and the temporary buffer can be only 4-
word-sized.

Large Sized Blocks
If the blocks to transfer are significant (more than 15 words), the use of the registers can be optimized by increasing the
size of the temporary buffer. R6 and R7 are used only to save R8 and R9. This can be done in the temporary buffer, and
whole non-banked registers (R0 and R7) can be used for the transfer in the function DmaChannelFiq  (care must be taken
however when restoring R8 and R9).

The temporary buffer becomes 11 words (if optional increment feature is used), but the packets transferred are 8-words
(PACKET_SIZE).

It is necessary to add a 4-word conditional transfer before the 2-word transfer:

| | | *dest <- *src (load and store multiple 4 words with post
| | |    increment) if needed

This is coded by: 

ands r0, r10, #0x10
ldmneia r8!, {r0-r3}
stmneia r9!, {r0-r3}
7


	Introduction
	Theory of Operation
	DMA Turbo
	User Functions
	Alternate Implementation

	DMA Channel
	Type Definition
	User Functions

	Required Resources
	Tips and Warnings for Both Types of DMA Implementation
	Pointer Alignment
	FIQ Rate

	Tips and Warnings for DMA Channel Implementation
	Temporary Buffer
	Pointer Incrementation
	Large Sized Blocks


