
1

AVR032: Linker Command Files for the
IAR ICCA90 Compiler

Features
• XLINK commands
• Segment explanation and location
• Linker file examples for:

– AT90S2313
– AT90S8515
– AT90S8515 with external RAM and

Memory mapped I/O

Introduction
This application note describes how to
make a linker command file for use with
the IAR ICCA90 C-compiler for the
AVR® microcontroller.

Background
The C-compiler converts the source
code to object code, which can be exe-
cuted by a microcontroller. This code is
divided in modules with blocks of code
and data. The output from the compiler
is relocatable, which means it has no
absolute memory addresses.

When the code is linked with XLINK, the
code is placed at actual addresses in
memory. The linker also adds pre-com-
piled code from external libraries.

When XLINK reads an external library
module only the modules referred by the
user program will be loaded.

The output from XLINK is executable
code that can be downloaded to the
flash controller, or simulated in AVR Stu-
dio.

To instruct XLINK what to do, the user
writes a command file. The command file
contains a series of instructions to
XLINK. The IAR Embedded Workbench
includes a set of standard XLINK com-
mand files for different memory sizes.
These files are based upon assumptions
about the target system which may not
be valid. Even if the assumptions are
valid, modifying the command file will in
most cases lead to better memory utili-
zation.

This application note describes how to
make a custom command file for the
AVR controllers. To make a customized
XLINK linker file, use a text editor to
write the code. Save the fi le in the
project directory with .XCL extension,
e.g. mylink.xcl.

To use the file in the Embedded Work-
bench, select project options,
XLINK include. Select override
default at XCL file name, and select the
new .xcl file.

Linker
Command Files
for the IAR
ICCA90
Compiler

Application
Note

Rev. 1079A–10/98

AVR0322

Figure 1. The linker places the executable object code in memory

XLINK Commands
The XLINK linker commands which are used in the com-
mand file are briefly described in the following section. All
addresses and sizes are given as hexadecimal values. For
a complete reference see IAR Assembler Users Guide,
XLINK options summary.

Comments:
-! This is a comment -!

Comments starts and stops with the -! sign

Define CPU type:
-c<cpu>

Example:
-ca90

Defines AVR as CPU type. Always start the XLINK file with
this command.

Define segments:
-Z(memory type)segment name,……………,segment name=

start(Hex)- end(Hex)

Example:
-Z(CODE)RCODE,CDATA0=1C-1FFF

Defines segments in flash memory. The RCODE segment
here starts at address 1C immediately followed by the
CDATA0 segment. If the total size of these segments are

larger than the space offered, an error message will be
given.

Example:
-Z(DATA)IDATA1,UDATA1,ECSTR,CSTACK+40=120-25F

Defines segments in RAM memory. IDATA1 will start at
address 120, followed by UDATA1 and ECSTR. CSTACK
+ 40 means that the CSTACK segment will start 40 bytes
(hex) higher than the end of ECSTR. (The stack grows
backwards)

Define replace names for external symbols:
-ereplace_name

Example:
-e_small_write=_formatted_write

Replaces the external standard _formatted_write routine
with the reduced _small_write. This is often done with the
read and write routines scanf() and printf(), since the stan-
dard ANSI input and output routines are very comprehen-
sive and result in large code.

Disable warnings:
-wno

Example:
-w29

Disable warning number 29.

SOURCE 2SOURCE 1

OBJECT CODE
2

LINKER LINKER
COMMAND

FILE

EXECUTABLE
PROGRAM

OBJECT CODE
1

C-COMPILER

SOURCE 3 LIBRARY

MEMORY
MAP

ASSEMBLER

OBJECT CODE
3

AVR032

3

Segments
The AVR microcontroller can use several types of memory:

• Program memory. Flash memory that holds read-only
segment

• Internal RAM. On-Chip SRAM, read-write segments

• External Memory. Connected to the external data bus.
Can be e.g. SRAM, EPROM, EEPROM or memory-
mapped I/O.

The various memory types and segments are described
below. The user may also define segments, and place vari-
ables at a specific location.

Program Memory Segments
Segments in program memory are read only.

Note: XLINK always counts segments in bytes, while the AVR
program address counter counts words.

INTVEC
Holds the reset and interrupt vectors for the controller. For
devices with less than 8K bytes memory each interrupt vec-
tor holds an RJMP (Relative Jump) instruction which is 2
bytes long. For devices with more than 8K bytes memory
each interrupt vector holds a JMP (Jump) instruction which
is 4 bytes long. See the AVR databook, reset and interrupt
handling for details.

The size of this segment must be given by the user.

For AT90S8515 this segment is located at address 0 - 1B.
This gives 28 locations which is sufficient to hold the
RESET vector and the 13 interrupt vectors:

Example:
-Z(CODE)INTVEC=0-1B

RCODE
Holds code reachable with the RJMP instruction from
INTVEC segment. C-STARTUP is placed in the RCODE
segment. C-STARTUP performs low level initialization of
the processor:

• Initialization of stack pointers for data and program

• Initializes static variables

• Calls the C function main ()

Normally, C-STARTUP should be left unchanged. See
ICCA90 Users Guide for instructions on how to modify the
default C-STARTUP routine. RJMP can reach the entire
address space for controllers up to 8K bytes of program
memory (e.g., AT90S8515).

For devices with more than 8K bytes program memory, the
interrupt vectors are 2 words (4 bytes). This means each
interrupt vector can hold a JMP instruction which reaches
the entire memory space.

The size of this segment is deduced by XLINK.

CDATA0, CDATA1, CDATA2, CDATA3
Holds initialization constants for tiny, small, far and huge
data. At startup these segments are copied to the RAM
segments IDATA. The sizes of these segments are
deduced by XLINK.

Example:
char i = 0; /* GLOBAL C VARIABLE */

CCSTR
Contains C string literals. At startup this segment is copied
to the ECSTR segment in SRAM. The size of this segment
is deduced by XLINK.

FLASH
Contains constants declared as type flash. The constants
are accessed in the program with the LPM instruction. The
size of this segment is deduced by XLINK.

Example:
flash char mystring[] = “String in flash memory” ;

This C-code to declares a constant array which is stored in
flash memory.

SWITCH
Contains jump tables generated by switch statements. The
size of this segment is deduced by XLINK.

CODE
Contains the program code. The size of this segment is
deduced by XLINK.

Declaring segments in program memory is straightforward.
Two parameters are important: Size of interrupt vector
table, and size of program memory on the device.

The following lines are sufficient to declare program mem-
ory segments:

-Z(CODE)INTVEC=0-Interrupt vector size(bytes)

-Z(CODE)RCODE,CDATA0,CDATA1,CCSTR,SWITCH,

FLASH,CODE=Interrupt vector size(bytes)-End of pro-

gram memory(bytes)

This will set up the memory like Figure 2:

Figure 2. Program Memory Map

INTVEC

RCODE

CDATA0

CDATA1

CCSTR

SWITCH

FLASH

CODE

AVR0324

Data Memory Segment:
Data memory consists of internal and external RAM. The
32 general purpose registers are mapped into RAM
addresses 0-1F (hex), the 64 I/O registers are mapped into
addresses 20-5F (hex). Internal RAM is starting at address
60 (hex). The start of the external RAM area is device
dependent.

Variables in RAM are read-write variables.

Figure 3. Data Memory Map

UDATA0, UDATA1, UDATA2, UDATA3
Uninitialized data for tiny, small, far and huge variables
respectively. Contains space for variables which are not ini-
tialized at declaration. The size of this segment can either
be given by the user or deduced by XLINK. The latter is
recommended.

IDATA0, IDATA1, IDATA2, IDATA3
Initialized data for tiny, small, far and huge variables. Holds
data that are initialized at declaration. Variables in IDATA
are copied from the corresponding CDATA segment in the
code at startup. The size of this segment can either be
given by the user or deduced by XLINK. The latter is rec-
ommended.

If the compiler option -y (writable strings) is active, const
objects will be copied to IDATA segment from CDATA at
startup.

Note: Variables declared as tiny are placed in the IDATA0
and UDATA0 segments. Tiny variables can be reached by
using 8-bit address. This give them a address reach of 256
bytes (0-FF). Due to the fact that the general purpose reg-
isters and I/O registers are memory mapped, tiny variables
must not be placed on addresses below 60 (hex), and they
must not be placed at addresses higher than 255 (hex)
(FF).

Example:
tiny int temp;

C-declaration of a variable placed in the UDATA0 segment.

There are several ways of setting the segments for tiny
variables.

Example:
-Z(DATA)IDATA0,UDATA0=60-FF

This allocates the address space between addresses 60-
FF (hex) for tiny variables. It allocates the entire address
space from address 60 to address FF, even if the program
does not use tiny variables! If the program uses more tiny
variables than there is space for the user will get an error
message.

Example:
-Z(DATA)IDATA0,UDATA0,RSTACK+20,IDATA1,

UDATA1,ECSTR,CSTACK+60=60-25F

This places the tiny variables in the lower part of the inter-
nal RAM address space, immediately followed by the
RSTACK segment. No RAM space will be lost if there is
few tiny variables, but no warning will be given if the pro-
g ram con ta ins so many t i ny var iab les tha t t he
IDATA0/UDATA0 exceed address FF (hex).

Watch out for unpredictable behavior of the program
caused by this possibility, read the linker map file listing
carefully to investigate the actual space required by the tiny
variables.

RSTACK
Return stack. This segment holds the return addresses of
function calls. The stack pointer is used to access this
stack. The size of RSTACK is application dependent. Each
call to a function requires 2 bytes on the stack for return
addresses. Return addresses for interrupt routines are also
stored on the return stack. If the stack size is declared too
small, the stack will overwrite another segment in the data
area.

ECSTR
Holds writable copies of C string literals if the compiler
option -y (writable strings) is active. This segment is copied
from CCSTR segment in CODE at startup. If there is a
shortage of data memory, check whether the strings are
constants and use flash declarations instead to minimize
data memory usage.

CSTACK
Data stack. This segment holds the return stack for local
data. The Y-pointer (R28-R29) is used to access this stack.
The size of CSTACK is application dependent. The
CSTACK is used to store local variables and parameters,
temporary values and storing of registers during interrupt. If
the stack size is too small, the stack will overwrite another
segment in the data area.

32 General Purpose Registers

64 I/O Registers

Internal SRAM

External SRAM

0000

0020

0060

variable

AVR032

5

External PROM
Warning: If the compiler option -y (writable strings) is not
active (default), the compiler assumes there is an external
PROM in the system. In most cases the system does not
have an external PROM, and the writable string should be
active (checked). To minimize data memory usage it is rec-
ommended to use the flash keyword for constants.

Example:
flash char mystring[] = “String in flash memory”;

The following read-only segments are placed in external
PROM.

CONST
Holds variables declared as const.

CSTR
Holds string literals when the -y (writable strings) is inac-
tive.

Note: The CONST and CSTR should only be included in the
XLINK file if there is an external PROM in the system.

User Defined Segments
The user may define segments and place variables at
absolute addresses in memory.

Example: Memory mapped real time clock placed at abso-
lute address in external address space. Linker file com-
mand:

-Z(DATA)RTC=0F00-0F70

C-Code to place variables in this memory mapped I/O:
#Pragma Memory=DATASEG(RTC)

UNSIGNEDCHAR SEC,MIN,HOURS;

#PRAGMA MEMORY=DEFAULT

AVR0326

Example Code 1
Example using AT90S2313 with 2K bytes flash memory
and 128 bytes internal RAM. The segments will be set up
like the memory map below. In code memory only the
INTVEC segment has a specific address location. The

other segments will be placed at the subsequent addresses
in the order specified in the linker file. In RAM, only the
order of the segments are specified, not the specific
address locations.

-! XLINK command file for the AT90S2313 128 bytes(60 - DF) data address

 space and 2 Kbytes(0- 7FF) program address space. -!

-! Define CPU type (AVR) -!

-ca90

-! Define reset and I/O interrupt vector segment, requires 22(dec) locations -!

-Z(CODE)INTVEC=0-15

-! Define segments in flash memory -!

-Z(CODE)RCODE,CDATA0,CCSTR,SWITCH,FLASH,CODE=16-7FF

-! Define segments in RAM

The registers are in 0-1F, memory mapped I/O in 20-5F, Built-in SRAM in 60-DF. -!

-! Return stack size is 10 bytes(hex), data stack size is 40 bytes(hex) -!

-Z(DATA)IDATA0,UDATA0,RSTACK+10,ECSTR,CSTACK+40=60-DF

-! Select reduced "printf" support to reduce library size.

See the configuration section of the IAR C-compiler Users Guide concerning use of printf/sprintf. -!

-e_small_write=_formatted_write

-e_small_write_P=_formatted_write_P

-! Disable floating-point support in "scanf" to reduce library size.

See the configuration section of the IAR C-compiler Users Guide concerning use of scanf/sscanf -!

-e_medium_read=_formatted_read

-e_medium_read_P=_formatted_read_P

-! Suppress one warning which is not relevant for this processor -!

-w29

-! Load the tiny 'C' library for processor option_VO -!

cl0t

INTVEC
0000

0016

07FF

RCODE

CDATA0

CCSTR

SWITCH

FLASH

CODE

CODE MEMORY

32 gen. purpose registers
0000

0020

00DF

64 I/O registers

IDATA0

UDATA0

RSTACK

ECSTR

CSTACK

DATA MEMORY

0060

AVR032

7

Example Code 2
Example using AT90S8515 with 8K bytes flash memory
and 512 bytes internal RAM. The segments will be set up
like the memory map below. In code memory only the
INTVEC segment has a specific address location. The

other segments wil l be placed at the subsequently
addresses in the order specified in the linker file. In RAM,
only the order of the segments are specified.

-! XLINK command file for AT90S8515. 512 bytes data address

 space and 8 Kbytes program address space. -!

-! Define CPU type (AVR) -!

-ca90

-! Define reset and interrupt vector segment, requires 28(dec) locations -!

-Z(CODE)INTVEC=0-1B

-! Define segments in flash memory -!

-Z(CODE)RCODE,CDATA0,CDATA1,CCSTR,SWITCH,FLASH,CODE=1C-1FFF

-! Define segments in RAM -!

-! The registers are in addresses 0-1F and memory mapped I/O in addresses 20-5F, built-in SRAM in

addresses 60-25F.

Data stack(CSTACK) size is 60 bytes(hex), return stack(RSTACK) size is 20 bytes(hex) -!

-Z(DATA)IDATA0,UDATA0,RSTACK+20,IDATA1,UDATA1,ECSTR,CSTACK+60=60-25F

-! Select reduced "printf" support to reduce library size.

 See the configuration section of the IAR C-compiler Users Guide concerning use of printf/sprintf. -!

-e_small_write=_formatted_write

-e_small_write_P=_formatted_write_P

-! Disable floating-point support in "scanf" to reduce library size.

 See the configuration section of the IAR C-compiler Users Guide concerning use of scanf/sscanf -!

-e_medium_read=_formatted_read

-e_medium_read_P=_formatted_read_P

-! Suppress one warning which is not relevant for this processor -!

-w29

-! Load the small 'C' library for processor option_v1-!

cl1s

INTVEC
0000

001C

1FFF

RCODE

CDATA0

CCSTR

SWITCH

FLASH

CODE

CODE MEMORY

32 gen. purpose registers
0000

0020

025F

64 I/O registers

IDATA0

UDATA0

RSTACK

ECSTR

CSTACK

DATA MEMORY

0060

IDATA1

UDATA1

INTERNAL RAM

AVR0328

Example Code 3
Example using AT90S8515 with 8 Kbytes flash memory,
512 bytes internal RAM, 32Kbytes external RAM and mem-
ory mapped I/O. The RSTACK (return stack) is placed in
external memory.

In code memory only the INTVEC segment has a specific
address location. The other segments will be placed at the
subsequent addresses in the order specified in the linker
file. In RAM, the addresses from 60-FF (hex) are reserved
for tiny variables. The rest of the internal memory is
reserved for ECSTR and CSTACK segment.

-! XLINK command file for AT90S8515. 512 bytes internal data address

 space, 32Kbytes external SRAM, memory mapped I/O

 and 8 Kbytes program address space. -!

-! Define CPU type (AVR) -!

-ca90

-! Define interrupt vector segment -!

-Z(CODE)INTVEC=0-1B

-! Define segments in flash memory -!

-Z(CODE)RCODE,CDATA0,CDATA1,CCSTR,SWITCH,FLASH,CODE=1C-1FFF

-! Define segments in RAM

 Built-in SRAM in 60-25F. The registers are in 0-1F and memory mapped I/O in 20-5F -!

-! The IDATA0 and UDATA0 segments contains tiny variables, the segments must be placed within the reach of a

tiny (8 bits) pointer. -!

-Z(DATA)IDATA0,UDATA0=60-FF

-! Data stack in internal memory, size is 100(hex)bytes -!

-Z(DATA)ECSTR,CSTACK+100=100-25F

-! 32Kbytes external SRAM starting, using near variables -!

 -! Return stack size is 40(hex) bytes in external RAM -!

 -! First tell CSTARTUP that RSTACK is placed in External RAM -!

-e?RSTACK_IN_EXTERNAL_RAM=?C_STARTUP

-Z(DATA)IDATA1,UDATA1,RSTACK+40=260-7FFF

-! External memory mapped IO is used -!

-Z(DATA)NO_INIT=8000-FFFF

-! Select reduced "printf" support to reduce library size.

 See the configuration section of the IAR C-compiler Users Guide concerning use of printf/sprintf. -!

-e_small_write=_formatted_write

-e_small_write_P=_formatted_write_P

INTVEC
0000

001C

00FF

RCODE

CDATA0

CCSTR

SWITCH

FLASH

CODE

32 gen. purpose registers
0000

0020

025F

64 I/O registers

IDATA0

UDATA0

ECSTR

CSTACK

0060

IDATA1

UDATA1

INTERNAL RAM

EXTERNAL RAM

RSTACK

}

1FFF

MEM. MAPPED I/O

07FFF}

AVR032

9

-! Disable floating-point support in "scanf" to reduce library size.

 See the configuration section of the IAR C-compiler Users Guide concerning use of scanf/sscanf -!

-e_medium_read=_formatted_read

-e_medium_read_P=_formatted_read_P

-! Suppress one warning which is not relevant for this processor -!

-w29

-! Load the small 'C' library for processor option_v1-!

cl1s

Reference
IAR C-Compiler Users Guide.

IAR Assembler Users Guide, XLINK section

AVR Microcontroller data book May 1997

AVR03210

AVR032

11

