
1

AVR100: Accessing the EEP ROM

Features
• Random Rea d/Write
• Sequential Rea d/Write
• Runable Test/Example Program

Int roduction
This application note contains routines
for access of the EEPROM memory in
the AVR Microcontroller. Two types of
Read/Write access has been imple-
mented:

• Random read/write: The user must set
up both data and address before
calling the Read or Write routine

• Sequential read/write: The user needs
only to set up the data to be
read/written. The current EEPROM
address is automatically incremented
prior to access. The address has to be
set prior to writing the first byte in a
sequense

The application note contains four rou-
tines which are described in detail in the
following sections. This application note
contains routines for accessing the
EEPROM in all AVR devices.

Random Write -
Subroutine “EEWrite”
Three register variables must be set up
prior to calling this routine:

• EEdwr - Data to be written

• EEawr - Address low byte to write

• EEawrh - Address high byte to write

The subroutine waits until the EEPROM
is ready to be programmed by polling the
EEPROM Write Enable - EEWE bit in
the EEPROM Control Register - EECR.
When EEWE is zero, the contents of
EEdwr is transferred to the EEPROM

Data Register - EEDR, and the contents
of EEawrh:EEawr is transferred to the
EEPROM Address Reg is te r -
EEARH:EEARL. First the EEPROM mas-
ter write enable - EEMWE is set, fol-
lowed by the EEPROM write strobe
EEWE in EECR. See Figure 1.

Figure 1. “EEWrite” Flow Chart

EEARH:EEARL EEawh:EEawr

EEDR EEdwr

Set EEMWE

Set EEWE

EEWrite

N

Y

RETURN

EEWE = 0?

Global Interrupt
Disable

Global Interrupt
Enable

8-Bit
MCU with
Downloada ble
Flash

Application
Note

AVR100

Rev. 0932B–12/98

AVR1002

Random Read - Subroutine “EERead”
Prior to calling this routine, two register variables must be
set up:

EEard - Address of low byte to read from

EEardh - Address of high byte to read from

The subroutine waits until the EEPROM is ready to be
accessed by polling the EEWE bit in the EEPROM Control
Register - EECR. When EEWE is zero, the subroutine and
transfers the contents of EEardh:EEard to the EEPROM
Address Register - EEARH:EEARL.

It then sets the EEPROM Read Strobe - EERE.

In the next instruction the content of the EEDR register is
tranferred to the register variable EEdrd. See Figure 2.

Figure 2. “EERead” Flow Chart

Sequential Write -
Subroutine “EEWrite_seq”
Prior to calling this routine, one register variable must be
set up:

EEdwr_s - Data to write

The subroutine waits until the EEPROM is ready to be pro-
grammed by polling the EEWE bit in the EEPROM Control
Register - EECR. When EEWE is zero and the contents of
the EEPROM address register - EEARH:EEARL are read
into the register variable EEWTMPH:EEWTMP. EEwtmp is
incremented and written back to EEARH:EEARL. This
increments the current EEPROM address by one. The con-
tents of EEdwr is then transferred to the EEPROM Data
Register - EEDR, before EEWE in EECR is set, and then
EEMWE is set. See Figure 3.

Figure 3. “EEWrite_seq” Flow Chart

EEARH:EEARL EEardh:EEard

SET EERE

EEdrd EEDR

EERead

N

Y

RETURN

EEWE = 0?

 EEARH:EEARL EE ARH:EEARL +1

EEDR EEdwr

SET EEWE

SET EEMWE

EEWrite_seq

N

Y

RETURN

EEWE = 0?

Disable Global
Interrupt

Enable Global
Interrupt

AVR100

3

Sequential Read -
Subroutine “EERead_seq”
The subroutine waits until the EEPROM is ready to be
accessed by polling the EEWE bit in the EEPROM Control
Register - EECR. The subroutine then increments the cur-
rent EEPROM address by performing the following opera-
t i on : T rans fe r EEAR to the reg is te r va r iab le
EERTMPH:EERTMP, increments this register and writes
the new address back to EEARH:EEARL. The routine then
sets the EEPROM Read Strobe - EERE twice. Finally, the
EEPROM data is transferred from EEDR to the register
variable EEdrd_s. See Figure 4.

Figure 4. “EERead_seq” Flow Chart for 8515

Optimization for different devices
Not all the instructions are necessary for all devices. If the
device has an EEPROM of 256 bytes or less, the high
address of the EEPROM address register doesn’t need to
be changed. On the AT90S1200, the EEMWE bit in the
EEGR doesn’t have to be set.

See the section EEPROM Read/Write in the datasheet for
further information.

Test Program
The application note assembly file contains a complete pro-
gram which calls the four subroutines as a test of operation,
and also as an example of usage. The test program is suit-
able for running in AVR Studio.

The test programs contains comments on how to port the
code to work on any AVR-part.

Note: If the code initiates a write to EEPROM shortly after
reset, keep in mind the following: If EEPROM contents
are programmed during the manufacturing process, the
MCU might change the code shortly after programming.
When the programmer then verifies the EEPROM con-
tents, this might fail because the EEPROM contents
have already been modified by the MCU. Also notice that
some in-system programmers will allow the MCU to exe-
cute a short time between each step in the programming
and verification process.

EEARH:EEARL EEARH:EEARL +1

EEdrd EEDR

SET EERE

EERead_seq

N

Y

RETURN

EEWE = 0?

Table 1. CPU and Memory Usage

Function Code Size Cycles Example Register Usage Description

EEWrite 10 words 15 R16, R17, R18 EEPROM Random Location Write

EERead 7 words 11 R0, R17, R18 EEPROM Random Location Read

EEWrite_seq 13 words 19 R24, R25, R18 EEPROM Sequential Location Write

EERead_seq 10 words 17 R0, R24, R25 EEPROM Sequential Location Read

Reset 8 words 8 R16 Example Initialisation

Main 39 words - R16, R19, R20 Example Program

TOTAL 87 words - R0, R16, R17, R18, R19, R20, R24, R25 -

AVR1004

avr100.asm
;**** A P P L I C A T I O N N O T E A V R 1 0 0 ************************

;*

;* Title: Accessing the EEPROM

;* Version: 2.0

;* Last updated: 98.10.14

;* Target: AT90S8515

;* Suitable for: Any AVR with internal EEPROM

;*

;* Support E-mail: avr@atmel.com

;*

;* DESCRIPTION

;* This Application note shows how to read data from and write data to the

;* EEPROM. Both random access and sequential access routines are listed.

;* The code is written for 8515. To modify for 90S4414,90S2313,90S2323...

;* apply the following changes:

;*- Remove all entries to EEPROM Address Register High Byte EEARH

;*

;* To modify for 90S1200, apply the changes above. In addition:

;*- Remove all writes to EEMWE

;*

;*

;* Change log

;*V2.098.10.14 (jboe)Bugfix, changed to support AT90S8515

;*V1.197.07.04 (gk) Created

;***

.include "8515def.inc"

rjmpRESET;Reset Handle

;***

;*

;* EEWrite

;*

;* This subroutine waits until the EEPROM is ready to be programmed, then

;* programs the EEPROM with register variable "EEdwr" at address "EEawr:EEawr"

;*

;* Number of words : 7 + return

;* Number of cycles : 11 + return (if EEPROM is ready)

;* Low Registers used:None

;* High Registers used :3 (EEdwr,EEawr,EEawrh)

;*

;***

Table 2. Peripheral Usage

Peripheral Description Interrupts Enabled

8 I/O Pins LEDs (example only) -

1 I/O Pin Button (example only) -

10 bytes EEPROM Target EEPROM Locations (example only) -

AVR100

5

;***** Subroutine register variables

.def EEdwr =r16 ;data byte to write to EEPROM

.def EEawr =r17 ;address low byte to write to

.def EEawrh =r18 ;address high byte to write to

;***** Code

EEWrite:

sbic EECR,EEWE ;if EEWE not clear

rjmp EEWrite ; wait more

out EEARH,EEawrh ;output address high byte, remove if no high byte exist

out EEARL,EEawr ;output address low byte

out EEDR,EEdwr ;output data

cli ;disable global interrupts

sbi EECR,EEMWE ;set master write enable, remove if AT90S1200 is used

sbi EECR,EEWE ;set EEPROM Write strobe

;This instruction takes 4 clock cycles since

;it halts the CPU for two clock cycles

sei ;enable global interrupts

ret

;***

;*

;* EERead

;*

;* This subroutine waits until the EEPROM is ready to be programmed, then

;* reads the register variable "EEdrd" from address "EEardh:EEard"

;*

;* Number of words : 6 + return

;* Number of cycles : 9 + return (if EEPROM is ready)

;* Low Registers used :1 (EEdrd)

;* High Registers used :2 (EEard,EEardh)

;*

;***

;***** Subroutine register variables

.def EEdrd =r0 ;result data byte

.def EEard =r17 ;address low to read from

.def EEardh =r18 ;address high to read from

;***** Code

EERead:

6

sbic EECR,EEWE ;if EEWE not clear

rjmp EERead ; wait more

out EEARH,EEardh ;output address high byte, remove if no high byte exist

out EEARL,EEard ;output address low byte

sbi EECR,EERE ;set EEPROM Read strobe

;This instruction takes 4 clock cycles since

;it halts the CPU for two clock cycles

in EEdrd,EEDR ;get data

ret

;***

;*

;* EEWrite_seq

;*

;* This subroutine increments the EEPROM address by one and waits until the

;* EEPROM is ready for programming. It then programs the EEPROM with

;* register variable "EEdwr_s".

;* Number of words : 12 + return

;* Number of cycles : 15 + return (if EEPROM is ready)

;* Low Registers used :None

;* High Registers used :3 (EEdwr_s,EEwtmp,EEwtmph)

;*

;***

;***** Subroutine register variables

.def EEwtmp =r24 ;temporary storage of address low byte

.def EEwtmph =r25 ;temporary storage of address high byte

.def EEdwr_s =r18 ;data to write

;***** Code

EEWrite_seq:

sbic EECR,EEWE ;if EEWE not clear

rjmp EEWrite_seq ;wait more

in EEwtmp,EEARL ;get address low byte

in EEwtmph,EEARH ;get address high byte, remove if no high byte exists

 adiw EEwtmp,0x01 ;increment address

out EEARL,EEwtmp ;output address low byte

out EEARH,EEwtmph ;output address byte, remove if no high byte exists

out EEDR,EEdwr_s ;output data

cli ;disable global interrupts

sbi EECR,EEMWE ;set master write enable, remove if 90S1200 is used

sbi EECR,EEWE ;set EEPROM Write strobe

AVR100

7

;This instruction takes 4 clock cycles since

;it halts the CPU for two clock cycles

sei ;enable global interrupts

ret

;***

;*

;* EERead_seq

;*

;* This subroutine increments the address stored in EEAR and reads the

;* EEPROM into the register variable "EEdrd_s".

;* Number of words : 9 + return

;* Number of cycles :13 + return (if EEPROM is ready)

;* Low Registers used :1 (EEdrd_s)

;* High Registers used: :2 (EErtmp,EErtmph)

;*

;***

;***** Subroutine register variables

.def EErtmp =r24 ;temporary storage of low address

.def EErtmph =r25 ;temporary storage of high address

.def EEdrd_s =r0 ;result data byte

;***** Code

EERead_seq:

sbic EECR,EEWE ;if EEWE not clear

rjmp EERead_seq ;wait more

;The above sequence for EEWE = 0 can be skipped if no write is initiated.

; Read sequence

in EErtmp,EEARL ;get address low byte

in EErtmph,EEARH ;get address high byte, remove if no high byte exists

adiw EErtmp,0x01 ;increment address

out EEARL,EErtmp ;output address low byte

out EEARH,EErtmph ;output address high byte, remove if no high byte exists

sbi EECR,EERE ;set EEPROM Read strobe

;This instruction takes 4 clock cycles since

;it halts the CPU for two clock cycles

in EEdrd_s,EEDR ;get data

ret

AVR1008

;**

;*

;* Test/Example Program

;*

;**

;***** Main Program Register variables

.def counter =r19

.def temp =r20

;***** Code

RESET:

;***** Initialize stack pointer

;* Initialize stack pointer to highest address in internal SRAM

;* Comment out for devices without SRAM

ldi r16,high(RAMEND) ;High byte only required if

out SPH,r16 ;RAM is bigger than 256 Bytes

ldi r16,low(RAMEND)

out SPL,r16

;***** Initialize portB

;* Port B is used to verify the operation of the EEPROM read

;* and write routines.

ldi r16,0xff ; DDRB=0xff ->PortB=output

out DDRB,r16

;***** Initialize portD

; bit0 of PortD is used to start the test program

ldi r16,0xff ; Enable all PortD pull-ups

out PORTD,r16

;***** Program start

;*

main: in r16,PIND ; Wait for user to push button on PD0

sbrc r16,0

rjmp main

;***** Program a random location

ldi EEdwr,$aa

ldi EEawrh,$00

AVR100

9

ldi EEawr,$10

rcall EEWrite ;store $aa in EEPROM location $0010

;***** Read from a random location

ldi EEardh,$00

ldi EEard,$10

rcall EERead ;read address $10

out PORTB,EEdrd ;output value to Port B

;***** Fill the EEPROM address 1..64 with bit pattern $55,$aa,$55,$aa,...

EEWrite_wait:

sbic EECR,EEWE ;if EEWE not clear

rjmp EEWrite_wait ; wait more

; The above sequence for EEWE = 0 can be skipped if it is guaranteed that no write is

; running when now changing the EEARL and EEARH registers.

ldi counter,63 ;init loop counter

clr temp

out EEARH,temp ;EEARH <- $00

clr temp

out EEARL,temp ;EEARL <- $00 (start address - 1)

loop1: ldi EEdwr_s,$55

rcall EEWrite_seq ;program EEPROM with $55

ldi EEdwr_s,$aa

rcall EEWrite_seq ;program EEPROM with $aa

dec counter ;decrement counter

brne loop1 ;and loop more if not done

;***** Copy 10 first bytes of EEPROM to r1-r11

EERead_wait:

sbic EECR,EEWE ;if EEWE not clear

rjmp EERead_wait ; wait more

; The above sequence for EEWE = 0 can be skipped if it is guaranteed that no write is

; running when we later change the EEARL and EEARH registers.

clr temp

out EEARH,temp ;EEARH <- $00

ldi temp,$00

out EEARL,temp ;EEARL <- $00 (start address - 1)

clr ZH

ldi ZL,1 ;Z-pointer points to r1

loop2: rcall EERead_seq ;get EEPROM data

st Z,EEdrd_s ;store to SRAM

inc ZL

AVR10010

cpi ZL,12 ;reached the end?

brne loop2 ;if not, loop more

forever:

rjmp forever ;This is the end. On completion, the program ends up here

AVR100

11

