
1

AVR134: Real-Time Clock (RTC) using the
Asynchronous Timer

Features
• Real-Time Clock with Very Low Power

Consumption (4 µA @ 3.3V)
• Very Low Cost Solution
• Adjustable Prescaler to Adjust

Precision
• Counts Time, Date, Month and Year with

Auto Leap Year Configuration
• Year 2000 Compliant Date Format
• Can be Used on all AVR Controllers with

RTC Module
• “C”-Code for ATMega103 Inculded

Introduction
This application note describes how to
implement a real-time clock (RTC) on
AVR microcontrollers that features the
RTC module. The implementat ion
requires only one discrete component –
a 32.768 kHz watch crystal. The applica-
tion has very low power consumption
because the microcontroller operates in
Power Save mode most of the time. In
power save mode the AVR controller is
sleeping with only a timer running. The
timer is clocked by the external crystal.
On every timer overflow the time, date,
month and year are counted. This RTC
implemen ta t ion is wr i t ten fo r the
ATmega103, and can easily be ported to
other AVRs with RTC Module. The

advantages of implementing a RTC in
software compared to an external hard-
ware RTC are obvious:

• Lower cost

• Few external components

• Lower power

• Greater flexibility

Theory of Operation
The implementation of a RTC utilizes the
asynchronous operation of the RTC
module. In this mode, Timer/Counter0
runs independently from the CPU clock.

Figure 1 shows that the AVR controller
operates from the 4 MHz main clock
source in normal operation. When low
power operation is desired the AVR
operates in Power Down mode, with only
the asynchronous timer running from an
external 32.768 kHz crystal.

The software real-time clock (RTC) is is
implemented using a 8-bit timer/counter
with overflow interrupt. The software
controls the overflow interrupt to count
clock and calendar variables. The Timer
Overflow interrupt is used to update the
software variables “second”, “minute”,
“hour”, “date”, “month” and “year” at the
correct intervals.

Figure 1. Oscillator connection for Real-Time Clock

XTAL1

XTAL2

TIMER/COUNTER0

TOSC2

TOSC1

VCC

32.768 kHz

4.000 MHz

AVR
R

ATmega103

8-bit
Microcontroller

Application
Note

Rev. 1259A–12/98

AVR1342

Because of the amount time for the timer/counter to com-
plete one overflow is always the same, each of these timer
variables will be incremented by a fixed number with every
timer overflow. The timer overflow interrupt routine is used
to perform this task.

To reduce power consumption, AVR enters Power Save
mode, in which all on-chip modules are disabled except for
the RTC. As shown in Table 1, the MCU typically con-
sumes less than 4 µA in this mode. The device will wake up
on the Timer Overflow interrupt. The updates of the timer
variables are performed during the active period.

Then the AVR re-enters the Power Save mode until the
next timer overflow occurs. Figure 2 and Figure 3 shows

the time the AVR controller operates in Power Save mode
versus that Active mode.

To calculate the total power consumption, the power con-
sumption in power save mode must be added to the power
consumption in active mode. The time it takes to update
the timer variables in the interrupt routine is less than 100
cycles, with a 4 MHz main clock this is 25 µs. The power
consumption for this period is neglectable. More important
is the wake up period for the controller. The wake up time
can be programmed to 35ms for use with external crystal,
or 1 ms for use with ceramic resonator. An example of a
circuit that wake up once every second to update the RTC
will show the power consumption for the two types of clock
source:

Figure 2. Current Figures for Crystal Oscillator,35 ms Startup Time

Total current consumption per second:

= (1 sec * 4 µA) + (35 ms * 6 mA) = 4 µAs + 210 µAs = 214 µAs

This shows that the dominating part of the current consumption is in active mode

Figure 3. Current Figures for Ceramic Resonator, 0.5 ms Startup Time

Total current consumption per second:

= (1 sec * 4 µA) + (1 ms * 6 mA) = 4 µAs + 6 µAs = 10 µAs

This shows that by reducing the startup time the current consumption is reduced from 100 µAs to 7 µAs

Table 1. Current Consumption by the AVR Controller in each Mode

Mode Typical Max

Active 4 MHz, 3.3 VCC 4 mA 6.0 mA

Idle 4 MHz, 3.3 VCC 1.8 mA 2.0 mA

Power Down 4 MHz, 3.3 VCC <1.0 µA 2.0 µA

Power Save 4 MHz, 3.3 VCC <4.0 µA 6.0 µA

Power Save

Active Mode

Time

Current

4µA 6mA

35ms1s

Power Save

Active Mode

Time

Current

4µA
6mA

1 ms1s

AVR134

3

Calculation
Given the frequency of the watch crystal, the user can
determine the time for each tick in the Timer/Counter by
selecting the desired prescale factor. As shown in Table 2,
CS02, CS01, and CS00 in the TCCR0 (Timer/Counter0
Control Register) define the prescaling source of the

Timer/Counter, where CK is the frequency of the watch
crystal. For example, i f CK equals 32,768 Hz, the
Timer/Counter will tick at a frequency of 256 Hz with a
prescaler of CK/128.

Note: CK = 32,768 Hz

Configuration Example
As shown in Figure 1, the crystal should be connected
directly between pins TOSC1 and TOSC2. No external
capacitance is needed. The oscillator is optimized for use
with a 32,768 Hz watch crystal, or an external clock signal
in the interval of 0 Hz - 256 kHz. In this example, the eight
LEDs in port B are used to display the RTC. The LED on
port B pin 0 will change state every second. The next 6
LEDs represents the minute in binary, and the LED on pin 7
stays on for 1 hour and off for the next.

Considerations should be taken when clocking the
timer/counter from an asynchronous clock source. A
32.768 kHz crystal have a stabilization time up to 1 second
after power up. The controller must therefore not enter
power save mode less than a second after power up. Care
must be taken when changing to asynchronous operation.
See the databook for detailed instructions. When updating
the timer register the data is transferred to a temporary reg-
ister and latched after two external clock cycles. The ASyn-
chronous Status Register (ASSR) contains status flags that
can be checked to control that the written register is
updated.

Implementation
The software consists of two subroutines. “counter” is the
Timer/Counter overflow service routine, which updates all
the timer variables whenever a timer overflow occurs. The
other one, “not_leap”, corrects the date for leap years. The
main program sets up all the necessary I/O registers to

enable the RTC module and controls the power down
sequence.

The AS0 bit in the ASSR (Asynchronous Status Register) is
set to configure Timer/Counter0 to be clocked from an
external clock source. Only this timer can perform asyn-
chronous operations. The start value for the timer is reset
and the desired prescaler value is selected. To synchronize
with the external clock signal the program wait for the
ASSR register to be updated. TOIE0 bit in the TIMSK
(Timer/Counter Interrupt Mask Register) is then set to
enable Timer/Counter0 Overflow interrupt. The Global
Interrupt Enable bit in SREG (Status Register) also has to
be set to enable all interrupts. SM1 and SM0 bit in MCUCR
(MCU Control Register) are set to select Power Save
mode. The SLEEP instruction will then place the controller.
in sleep mode. A loop in the main program executes the
SLEEP instruction.

“Counter” Overflow Interrupt Routine
The interrupt routine is executed every time a timer over-
flow occurs. It wakes up the MCU to update the timer vari-
ables. An interrupt procedure cannot return or accept any
variables. A global structure with timer variables are
declared to keep track of time: “second”, “minute”, “hour”,
“date”, “month” and “year”. Since the time required to com-
plete one timer overflow is known, “second” will be incre-
mented by a fixed number every time. Once it reaches 60,
“minute” is incremented by 1 and “second” is set to 0.

Table 2. Timer/Counter0 Prescale Select

CS02 CS01 CS00 Description Overflow Period

0 0 0 Timer/Counter0 is stopped -

0 0 1 CK 1/64s

0 1 0 CK/8 1/8s

0 1 1 CK/32 1/4s

1 0 0 CK/64 1/2s

1 0 1 CK/128 1s

1 1 0 CK/256 2s

1 1 1 CK/1024 8s

AVR1344

Figure 4. Flow Chart, CounterInterrupt Routine

Y

Y

counter

++ second
=60?

minute=minute +1
second = 0

minute = 60?

hour = hour +1
minute = 0

hour = 24?

date = date +1
hour = 0?

Y

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

N

A B

A B

date = 32?

date = 31 &
month = 4,6,9,11?

date = 30?

date = 32?

Month=2
and Not_Leap

month = month +1
date=1

month = 13?

year = year +1
month=1

Return

N

Y

AVR134

5

“not_leap” Subroutine
This routine checks whether or not it is a leap year. It
returns true if the year is not leap and false for leap. It is
considered a leap year if both of the following conditions
are satisfied:

1. The year is divisible by 4. and

2. If the year is divisible by 100, it also has to be divisi-
ble by 400.

Accuracy
The RTC on the AVR controller maintains high accuracy as
long as the watch crystal is accurate. Asynchronous opera-
tion allows the timer to run without any delays even when
the CPU is under heavy computation. However, a small
neglible discrepancy does occur because the timer vari-
ables are not updated in parallel. By the time they are fin-
ished updating, they deviate from the Timer/Counter very
slightly. The largest discrepancy occurs when all the timer
variables are overflowed. At this moment, “second” is 59,
“minute” is 59, “hour” is 23, and so on. It takes 94 cycles for
the MCU to complete the update. At a 4Mhz CPU clock, the
error between the RTC and the watch crystal will not
exceed 23.5 µs found by 94 / (4 * 106). A typical error
should be 6 µs since 24 cycles are needed to update “sec-
ond”. This error does not accumulate since the timer is
always synchronous with the watch crystal.

Figure 5. Flow Chart

Resources

Y

N

not_leap

Year divisable
by 100?

return
year / 400

return year / 4

Table 3. CPU and Memory Usage

Function Code Size (bytes) Cycles Example Register Interrupt Description

main 104 - R16 Timer0 Overflow Sets the necessary configuration

counter 356 - R16, R17, R30, R31 - Updates the variables

not_leap 48 10 (typical) R16, R17, R20, R21 - Checks for leap year

Total 508 - -

Table 4. Peripheral Usage

Peripheral Description Interrupts Enabled

TOSC1, TOSC2 connected to external crystal -

Timer/counter0 real-time clock Timer/counter0 overflow

8 I/O pins on port B flashing LEDs (example only) -

AVR1346

/**** A V R A P P L I C A T I O N NOTE 1 3 4 **************************

 *

 * Title: Real-Time Clock

 * Version: 1.01

 * Last Updated: 12.10.98

 * Target: ATmega103 (All AVR Devices with secondary external oscillator)

 * Support E-mail: avr@atmel.com

 *

 * Description

 * This application note shows how to implement a Real-Time Clock utilizing a secondary

 * external oscilator. Included a test program that performs this function, which keeps

 * track of time, date, month, and year with auto leap-year configuration. 8 LEDs are used

 * to display the RTC. The 1st LED flashes every second, the next six represents the

 * minute, and the 8th LED represents the hour.

 *

 **/

#include <iom103.h>

#include <ina90.h>

char not_leap(void);

type def struct{

unsigned char second; //enter the current time, date, month, and year

unsigned char minute;

unsigned char hour;

unsigned char date;

unsigned char month;

unsigned int year;

 }time;

 time t;

void C_task main(void) //C_task means "main" is never called from another function

{

 int temp0,temp1;

 for(temp0=0;temp0<0x0040;temp0++) // Wait for external clock crystal to stabilize

 {

 for(temp1=0;temp1<0xFFFF;temp1++);

 }

 DDRB=0xFF;

 TIMSK &=~((1<<TOIE0)|(1<<OCIE0)); //Disable TC0 interrupt

 ASSR |= (1<<AS0); //set Timer/Counter0 to be asynchronous from the CPU clock

 //with a second external clock(32,768kHz)driving it.

 TCNT0 = 0x00;

 TCCR0 = 0x05; //prescale the timer to be clock source / 128 to make it

 //exactly 1 second for every overflow to occur

 while(ASSR&0x07); //Wait until TC0 is updated

AVR134

7

 TIMSK |= (1<<TOIE0); //set 8-bit Timer/Counter0 Overflow Interrupt Enable

 _SEI(); //set the Global Interrupt Enable Bit

 while(1)

 {

 MCUCR = 0x38; //entering sleeping mode: power save mode

 _SLEEP(); //will wake up from time overflow interrupt

 _NOP();

 TCCR0=0x05; // Write dummy value to Control register

 while(ASSR&0x07); //Wait until TC0 is updated

 }

}

interrupt [TIMER0_OVF_vect] void counter(void) //overflow interrupt vector

{

 if (++t.second==60) //keep track of time, date, month, and year

 {

 t.second=0;

 if (++t.minute==60)

 {

 t.minute=0;

 if (++t.hour==24)

 {

 t.hour=0;

 if (++t.date==32)

 {

 t.month++;

 t.date=1;

 }

 else if (t.date==31)

 {

 if ((t.month==4) || (t.month==6) || (t.month==9) || (t.month==11))

 {

 t.month++;

 t.date=1;

 }

 }

 else if (t.date==30)

 {

 if(t.month==2)

 {

 t.month++;

 t.date=1;

 }

 }

 else if (t.date==29)

 {

 if((t.month==2) && (not_leap()))

 {

AVR1348

 t.month++;

 t.date=1;

 }

 }

 if (t.month==13)

 {

 t.month=1;

 t.year++;

 }

 }

 }

 }

 PORTB=~(((t.second&0x01)|t.minute<<1)|t.hour<<7);

}

char not_leap(void) //check for leap year

{

 if (!(t.year%100))

 return (char)(t.year%400);

 else

 return (char)(t.year%4);

}

