
8-bit
Microcontroller
with 64K/128K
Bytes
In-System
Programmable
Flash

ATmega103L
Rev. F/G,
ATmega103
Rev. G
Errata Sheet
Errata
• Verifying the EEPROM at High Voltages During Programming (ATmega103)
• Wake-up from Power Save Executes Instructions Before Interrupt
• SPI can Send Wrong Byte
• Wrong Clearing of XTRF in MCUSR
• Reset During EEPROM Write
• SPI Interrupt Flag can be Undefined After Reset
• Verifying EEPROM In-System
• Serial Programming at Voltages Below 3.4 Volts (ATmega103L)
• Skip Instruction with Interrupts
• Signature Bytes
• Read Back Value during EEPROM polling
• MISO Output during In-System Programming
• The ADC has no Free-Running Mode

Note: ATmega103L operating range: 2.7V - 3.6V.
ATmega103 operating range: 4.0V - 5.5V

13. Verifying the EEPROM at High Voltages During Programming

Reading the EEPROM in the serial and the parallel programming modes is not
guaranteed for supply voltages above 5.1V. This applies for the programming pro-
cedures only. Thus, for normal operation, including EEPROM access from the
AVR itself, the ATmega103 device works in its full voltage range from 4.0V to
5.5V.

Problem Fix/Workaround

The programming voltage should be controlled not to exceed the 5.1V limit. If the
programming voltage is above 5.1V, the verification of the contents of the
EEPROM may fail. Alternatively, the timing specifications and voltage range for
the ATmega103L device can be used for the ATmega103 during programming

Note: In the past, the manufacturing test did not screen this programming issue properly. For
devices marked with ‘5V’ on the top side of the device, the programming is guaranteed
functional up to 5.1V.

12. Wake-up from Power Save Executes Instructions Before Interrupt

When waking up from power save, some instructions are executed before the
interrupt is called. If the device is woken up by an external interrupt, 2 instruction
cycles are executed. If it is woken up by the asynchronous timer, 3 instructions
are executed before the interrupt.

Problem Fix/Workaround

Make sure that the first two or three instructions following sleep is not dependent
of the executed interrupt.

11. The SPI can Send Wrong Byte

If the SPI is in master mode, it will restart the old transfer if new data is written on
the same clock edge as the previous transfer is finished.

Problem Fix/Workaround

When writing to the SPI, first wait until it is ready, then write the byte to transmit.
1

Rev. 1197B–02/99

10. Wrong Clearing of XTRF in MCUSR

The XTRF flag in MCUSR will be cleared when clearing
the PORF-flag. The flag does not get cleared by writing
a “0” to it.

Problem Fix/Workaround

Finish the test of both flags before clearing any of
them. Clear both flags simultaneously by writing 0 to
both PORF and XTRF in MCUCR.

9. Reset During EEPROM Write

If reset is activated during EEPROM write the result is
not what should be expected. The EEPROM write
cycle completes as normal, but the address registers
are reset to 0. The result is that both the address writ-
ten and address 0 in the EEPROM can be corrupted.

Problem Fix/Workaround

Avoid using address 0 for storage, unless you can
guarantee that you will not get a reset during EEPROM
write.

8. SPI Interrupt Flag can be Undefined After Reset

In certain cases when there are transitions on the SCK
pin during reset, or the SCK pin is left unconnected, the
start-up value of the SPI interrupt flag is be unknown. If
the flag is not reset before enabling the SPI interrupt, a
pending SPI interrupt may be executed.

Problem Fix/Workaround

Clear the SPI interrupt f lag before enabl ing the
interrupt.

7. Verifying EEPROM In-System

EEPROM verify In-System Programming mode cannot
operate with maximum clock frequency. This is inde-
pendent of the SPI clock frequency.

Problem Fix/Workaround

Reduce the clock speed, or avoid using the EEPROM
verify feature.

6. Serial Programming at Voltages Below 3.4 Volts

At voltages below 3.4 Volts, serial programming
might fail.

Note: Applies only to ATmega103L.

Problem Fix/Workaround

Ke ep VC C abo ve 3 .4 Vo l t s du r i ng i n - sys tem
programming.

5. Skip Instruction with Interrupts

A skip instruction (SBRS, SBRC, SBIS, SBIC, CPSE)
that skips a two-word instruction needs three clock
cycles. If an interrupt occurs during the first or second
clock cycle of this skip-instruction, the return address
will not be stored correctly on the stack. In this situa-
tion, the address of the second word in the two-word
instruction is stored. This means that on return from
interrupt, the second word of the two-word command
will be decoded and executed as an instruction. The
ATmega103 has four two-word instructions: LDS, STS,
JMP and CALL

Notes: 1. This can only occur if all of the following conditions
are true:
- A skip instruction is followed by a two-word instruc-
tion.
- The skip instruction is actually skipping the two-
word instruction.
- Interrupts are enabled, and at least one interrupt
source can generate an interrupt.
- An interrupt arrives in the first or second cycle of the
skip instruction.

2. This will only cause problems if the address of the fol-
lowing LDS or STS command points to an address
beyond 400 Hex.

Problem Fix/Workaround

For C-programs, use the IAR compiler version 1.40b or
later. The compiler will never generate the sequence.

For assembly program, avoid skipping a two word
instruction if interrupts are enabled.

4. Signature Bytes

The signature bytes of the f i rst few lots of the
ATmega103/L have been shipped with wrong signature
bytes. Also in the datasheet, the wrong signature bytes
has been given. The correct signature bytes are: $1E
$97 $01

Problem Fix/Workaround

Programmers must allow both $1E $97 $01 and $1E
$01 $01 as valid signature bytes.
2

3. Read Back Value during EEPROM Polling

When a new EEPROM byte is being programmed into
the EEPROM with In-System Programming, reading
the address location being programmed will give the
value P1 (see table 1) until the Auto-Erase is finished.
Then the value P2 will follow until programming is fin-
ished. At the t ime the device is ready for a new
EEPROM byte, the programmed value will read
correctly.

Note: This is only a problem for In-System Programmers.
Reading and writing the EEPROM during normal opera-
tion is not affected by this.

Problem Fix/Workaround

Programmers must allow both $80 and $7F as read
back values if data polling is used for the EEPROM.
Polling will not work for neither of the values P1 and
P2, so when programming these values, the user will

have to wait the prescribed time tWD_EEPROM before pro-
gramming the next byte.

2. MISO Active during In-System Programming

During In-System Programming, the Miso line of the
ATmega103 is active, even if the UART pins are used
for programming. If the pin is used as an input in the
application, a collision may occur on this line.

Problem Fix/Workaround

-If the MISO pin is used as a input, make sure that
there is a current limiting resistor in series with the line.

- If the pin is used as an output, make sure that what-
ever is connected to the line can accept that the pin is
toggling during programming

1. The ADC has no Free-Running Mode

Early versions of the ATmega603/103(L) data sheet
described an ADC Free-Running Mode. This mode is
not available in this device, and bit number 5 in the
ADCSR register must always be written as ‘0’.

Problem Fix/Workaround

Always use Single-Conversion Mode, and please use
the latest revision of the data sheet.

Table 1. Address Location

Revision P1 P2

F $7F $7F

G $80 $7F
3

	Errata
	13. Verifying the EEPROM at High Voltages During Programming
	12. Wake-up from Power Save Executes Instructions Before Interrupt
	11. The SPI can Send Wrong Byte
	10. Wrong Clearing of XTRF in MCUSR
	9. Reset During EEPROM Write
	8. SPI Interrupt Flag can be Undefined After Reset
	7. Verifying EEPROM In-System
	6. Serial Programming at Voltages Below 3.4 Volts
	5. Skip Instruction with Interrupts
	4. Signature Bytes
	3. Read Back Value during EEPROM Polling
	2. MISO Active during In-System Programming
	1. The ADC has no Free-Running Mode

