
ATasicICE

June 1998

Designer Guide

ATasicICE Designer Guide 1

ATasicICE
Designer Guide

1.0 Introduction The AVR ATasicICE (ASIC ICE) is a standardized development and test platform for
users of AVR in ASICs. The solution provides a flexible way of real time emulation of the
ASIC at hand. The ASIC ICE system is based on AVR Core version 2, which handles up
to 128K bytes (64K x 16 bit) program memory and 64K bytes data memory.

The ASIC ICE package also includes the ATasicICE POD as a reference pod design.

This document describes how to interface the ATasicICE with custom pod designs. Two
example designs based on the ATasicICE POD are also presented. For further informa-
tion about the ASIC ICE Pod, see the document ICEPRO ASIC POD User’s Guide. The
ASIC ICE is used together with the AVR Studio™ software.

1.1 Description of
the ASIC ICE

ASIC ICE is based on the well proven AVR ICEPRO platform which is used for emula-
tion of AVR standard parts. However, as each ASIC project has specific needs, a more
flexible solution has been developed. The main difference between the standard Emula-
tor and the ASIC ICE Emulator is that all the necessary buses as well as the interrupt
system are reflected on the pod connector.

Figure 1-1. AVR ATasicICE, Block Diagram

The AVR V2 Core is implemented in a high speed gate-array. Maximum operating fre-
quency for the core is currently higher than possible for the rest of the emulator system.
Timing issues are discussed in a separate section. The pod interface operates on +5V
only . Both program memory and internal data memory are mapped into an overlay

AVR ATASICICE

A
D

R

AVR V2 CORE
PROGRAM
MEMORY

INTERNAL
DATA

MEMORY

HOST
INTERFACE

POD INTERFACE

CLOCK
GENERATION

LOGIC D
B

U
S

HOST PC
W/ AVR
STUDIO

POD

C
T

R
L

ATasicICE Designer Guide

2 ATasicICE Designer Guide

memory. This makes it easy to download programs from the host. The clock generation
logic is controlled by the emulator, but additional lines to and from the pod interface
makes external control possible.

Note: Since the I/O is placed on an external pod, the timing will be different from the
timing in a final ASIC. Additional delay should be calculated into the total signal
delay. This delay includes the line delays.

1.2 Clock System Using the AVR Studio™ software front end, the user can select between the on-board
emulator clock, or an external clock source, e.g. the target system clock. EXTCLKEN
indicates whether an external clock source is expected or not, and EXTCLKIN is the
input pin for external clock source when selected.

Note: The pod should never try to drive EXTCLKIN if the EXTCLKEN is inactive.

The on-board clock module is functionally equivalent to the Verilog description:

assign clkalways = ck;

assign clkosc = ck | ~clken;

assign ckcore = stopcore | clkosc;

assign clkio = clkrun ? stopio | clkosc: emiowr;

ck is the clock source (internal or external). ckcore is the clock source for the on-board
AVR core (The details concerning emulator access to the core are not shown).

1.2.1 Clock Signals to the
Pod

CLKALWAYS: This line always supply a clock, even if the Emulator is in stopped state.

CLKOSC: This line supplies a clock if the CLKEN signal from the pod is high.

CLKIO: This line supplies a clock if the CLKEN signal is high, STOPIO is low, and the
emulator is running. When the emulator is stopped (CLKRUN is low), the emulator give
a positive clock edge on CLKIO each time the user writes to an I/O location using the
front-end software.

1.2.2 Control Signals from
the Pod

CLKEN: Stops all clocks except the CLKALWAYS signal, and can be used to implement
a power down mode where both the AVR core and the I/O is idle.

STOPCORE: Stops the clock signal to the AVR core.

STOPIO: Stops the clock signal CLKIO to the pod.

It should be noted that this emulator fully supports the sleep controller module used in
the standard AVR microcontrollers using the signals stopcore, stopio and clken. The
watch dog module found in the AVR microcontroller can be supported if run on the
CLKALWAYS signal, or from an external oscillator.

1.2.3 Other Clock Signals CLKRUN: This signal comes from the emulator and prevents the CLKIO and AVR core
clock from running when the user stops the emulator. Note that the emulator generates
a clock edge on clkio when writing to I/O locations. If I/O modules like timers are to be
stopped when the emulator stops, the operation of this I/O module must be qualified by
the CLKRUN signal.

1.2.4 Unsupported Clock
Functions

In an ASIC, it is possible to gate or multiplex clocks within the chip and have an accept-
able skew between the clocks. Using an FPGA, it is very difficult to control the timing, so
it is strongly recommended that only the clock signals described above are used in an
FPGA version of an ASIC.

ATasicICE Designer Guide

ATasicICE Designer Guide 3

1.2.5 Accessing
Resources When the
Emulator is Stopped

When the Emulator is not in RUN mode, the pod will be accessed by the Emulator sys-
tem for presentation in the front end software. All the different resources on the pod, and
the external memory should be read and write (if the resource is writable in nature)
accessible when the Emulator is not in RUN mode.

1.3 Reset Control Resetting the processor core can be done either by using the AVR Reset push button on
the emulator chassis, or by using the reset button on the AVR Studio toolbar.

1.3.1 Reset Signals ARESET (O): Active low output from the ASIC ICE emulator. Signalizes a request for a
core reset. Must be held active for at least 1 CPU clock.

IRESET (I): ASIC ICE input that resets the core. Must be hold active for at least 5 CPU
clocks.

Figure 1-2. Reset, Minimum Design

The pod design must include a reset control logic. A minimum reset control logic design
is shown on Figure 1-2. This design ensures that the IRESET signal is at least 5 CPU
clocks.

1.4 Interrupt System The ASIC ICE system supports up to 31 different interrupt sources. The pod needs to
have an interrupt controller, and pass the encoded interrupt vector through the pod inter-
face. The core acknowledges the acceptance of an interrupt back to the pod.

Figure 1-3. Interrupt Encoding System

The AVR core uses a number of unencoded interrupt request input lines and responds
to an interrupt request on these by using the IRQACK and the IRQACKAD lines. The

AIA CUSTOM DESIGN

ARESET\

IRESET

CLKALWAYS

AIA CUSTOM DESIGN

Q0

Register

Priority
Encoder

5

CLKIO

IRQ(ENC)[4:0]

IRQACK

IRQACKAD[4:0]

IRQ0
IRQ1

ATasicICE Designer Guide

4 ATasicICE Designer Guide

IRQACK indicates that the interrupt with highest priority is going to be handled by the
core. The IRQACKAD lines reflects the interrupt vector address to the interrupt request
that is going to be handled. To reduce the number of lines between the ASIC ICE emu-
lator and the pod, some of the core logic has to be duplicated in the pod design. Figure
1-3 shows how to implement the interrupt encoding system in a custom design.

When the priority encoded IRQ signals are set to zero, no interrupt will occur. If the
encoded IRQ[4:0] is nonzero, the value of IRQ[4:0] must be priority coded starting at 1
for highest priority and ending at 31 for lowest priority.

1.4.1 Interrupt Signals IRQ[4:0] (I): The lines encode the currently highest priority interrupt source from the I/O.

IRQACK (O): When the core accepts an interrupt and starts handling it, it gives an
acknowledge signal on the IRQACK line. Based on this, the interrupt source can take
the necessary actions (e.g. clear interrupt request flag).

1.4.2 Extended Interrupt
Signals

GLOBINT (O): This line reflects the current value of the Global Interrupt flag in the Sta-
tus Register.

IRQOK (O): Used during sleep to indicates to the sleep controller that an interrupt condi-
tion is established.

1.4.3 Custom Design
Without Interrupt
Support

If the interrupt system is not in use the pod must force all the interrupt request (IRQ4:0)
lines to a low level. This will ensure that no unwanted interrupts will occur.

1.5 Memory System This section describes how the different memories are handled in the ASIC ICE.

1.5.1 Program Memory Version 2 of the AVR Core handles up to 128K bytes (64K x 16-bit) of program memory.
This memory will always be handled inside the Emulator. There is no way of reading or
modifying this memory through the pod interface. Furthermore, there is no way of exe-
cuting code in an external program memory. Due to handling the program memory inter-
nally, the user will have access to an unlimited number of code break points.

1.5.2 Data Memory The Data memory area of an AVR consists of up to four areas. At the lowest addresses,
the Register file is mapped. Access to the registers will be handled internally in the core.
Next is the I/O area. Every access to the I/O area is reflected on the interface by the use
of the I/O read/write strobes (i.e. in the same way for load/store as for in/out.) except for
the I/O locations listed in the table below. Following the I/O area, there is an optional on-
chip data memory. If the ASIC has on board RAM, then this should be handled in the
Emulator. Last, the ASIC may have an external memory interface. If the ASIC has an
external memory, then this needs to be handled on the pod. The registers and the inter-
nal SRAM memory cannot be accessed from the pod.

The sizes of the register file and the I/O area are constant (32 registers, 64 I/O loca-
tions). The sizes of and the border between internal and external data memories can
change and needs to be configured by the user to ensure that the correct read and write
strobes are generated.

1.5.3 EEPROM Memory If EEPROM memory is required in the ASIC, then this memory needs to be placed on
the pod together with the EEPROM interface. The EEPROM is, in the AVR standard
parts, accessed through I/O registers, and since the I/O registers are being handled in
the pod, the pod needs to take full responsibility of the EEPROM memory.

ATasicICE Designer Guide

ATasicICE Designer Guide 5

1.5.4 I/O Locations
Handled in the Core

The following addresses in the I/O space will be handled directly in the core:

If the emulator is configured to use more than 64K bytes program memory, then the core
will take control of I/O location 0x3B and use it for the ELPM instruction. Otherwise, this
I/O location can be used freely on the pod. No I/O read strobe will be generated when
the I/O locations handled by the core are read. The configuration is done from AVR Stu-
dio in the emulator options menu.

1.5.5 Memory Busses ADR[15:0]: During RUN mode, ADR[15:0] are connected directly to the I/O and Memory
address bus of the Core. When the Emulator is stopped, the same lines are used by the
Emulator system to access resources on the pod and its surroundings.

DBUS[7:0]: During RUN mode, DBUS[7:0] are connected directly to the I/O and Memory
data bus of the Core. When the Emulator is stopped, the same lines are used to extract
information from the pod.

1.5.6 Memory Access
Control Signals
(From Emulator)

XRAMRE: XRAM Read Enable signal. During RUN mode, XRAMRE comes directly
from the Core. It can be configured through the software front end what address the
Core changes from accessing internal memory (on the Emulator) to accessing memory
on the pod.

XRAMWE: XRAM Write Enable signal. During RUN mode, XRAMWE comes directly
from the Core. It can be configured what address the Core changes from accessing
internal memory (on the Emulator) to accessing memory on the pod.

IORE: IO Read Enable signal. During RUN mode, IORE comes directly from the Core.

IOWE: IO Write Enable signal. During RUN mode, IOWE comes directly from the Core.

1.5.7 Wait State Control
Signals

MRAMACK: (Core output) Information supplied by the core to the pod to indicate that
the core will attempt to access RAM in two consecutive cycles (call and return instruc-
tions). This means that the pod might need to insert extra wait-states.

CPUWAIT: (Core input) This line is used to wait the processor. It must be used during
external memory accesses which cannot complete within the minimum time frame.

1.5.8 Data Bus Contention The AVR core data bus has no tri-state control at the interface to the I/O.

In the emulator, there is a tri-state control in the pads from the gate-array holding the
AVR core. The custom design should only drive this bus when either IORE or XRAMRE
is active. In all other cases, the core is driving the data bus. If the internal data bus in the
core has a valid signal, the value of this signal will be reflected at the data bus to the
POD. If the internal data bus in the core is hi-Z, the emulator is still driving the data bus
to the POD, but the value is indeterminate.

IMPORTANT!
■ The emulator exaggerates the risk for bus contention in the ASIC, in the sense that

the emulator AVR core drives the bus when the bus signal should not be trusted.

■ If the ASIC/FPGA on the POD uses the data bus for other purposes than core access,

the data bus must be isolated on the POD (or in the FPGA on the POD).

■ If an ASIC uses the core data bus under other circumstances than core access, this

function is still supported in the emulator.

Name I/O Address Data address Comment

SREG 0x3F 0x5F Status Register

SPH 0x3E 0x5E Stack Pointer High

SPL 0x3D 0x5D Stack Pointer Low

RAMPZ 0x3B 0x5B Only if Program Memory > 64K Byte

ATasicICE Designer Guide

6 ATasicICE Designer Guide

■ The internal registers inside the AVR core are: Stack Pointer High, Stack Pointer Low,

Status Register and RAMPZ (if enabled). If the core reads these registers, the IORE

signal at the POD remains low. This simplifies the design of the tri-state control in the

POD FPGA. The IORE and XRAMRE signals can be used to qualify when the FPGA

should drive the data bus, without having to check that the address really is contained

within the FPGA.

■ When the emulator is in stop mode, the emulator reads out data from the POD FPGA

by using the IORE and IOWE strobe signals. No particular precautions needs to be

taken in the FPGA in order to support this function as long as the IORE strobe

controls the direction of the data bus from the POD.

1.6 Timing Issues The ASIC ICE environment is different from a final ASIC. Use Figure 1-4 to calculate the
extra delay caused by the ASIC ICE. The delay values are absolute worst case values
(@70°C).

Figure 1-4. ASIC ICE, Timing Considerations

1.7 Sleep Control SLEEPI: When the core performs a SLEEP instruction, this is reflected on this line. If the
ASIC needs a Sleep system, then this signal needs to be handled on the pod.

1.8 Watchdog
System

If the ASIC needs a Watchdog system, the pod should handle this. The WDRI line indi-
cates that the core performs a WDR instruction. This signal can directly be used to reset
a watchdog timer. A watchdog timer overflow can force a internal reset using the IRE-
SET signal, if the watchdog is enabled.

Note: The IRESET should be held high for at least 5 core clocks (CLKIO) to ensure
that the core is reset.

1.8.1 Watchdog Control
Signals

WDRI: When the core performs a WDR instruction, this is reflected on this line.

AVR CORE GATE ARRAY

(Internal AIA
FPGA delay)

CUSTOM DESIGN

tPAD
<

3ns

D

Q

Q

tPD< 1ns

tlineCCK<2ns

 <26ns

D

Q

Q

CLOCK GEN
(Low Skew)

AVR ICEPRO ASIC

D

Q

Q

tSETUP

(Internal AIA
FPGA delay)

 <43ns

tint < 9ns

tlineCCK<2nstint < 9ns tPAD
<

3ns

tPAD
<

5ns

tlineCCK<2ns

tlineCCK<4ns

tlineCCK<4ns

tlineCCK<4ns

tPAD
<

*ns

tPAD
<

*ns

tPAD
<

*ns

tPAD<*ns

ATasicICE Designer Guide

ATasicICE Designer Guide 7

1.9 Power The ASIC ICE emulator can supply 1A (5V) to the target (custom design) through the
VDD pin on the pod connector. If the target has its own power supply, this must be con-
nected and disconnected only when the emulator is turned off. All GND pins on the pod
connector must be connected to ground.

Note: All circuits on the custom design must be properly decouped by decoupling
capacitors.

1.10 Unsupported
Signals in this
Release of ASIC
ICE

IOBUSY (I): When the Emulator stops, there might be operations in progress in some of
the I/O devices (for instance a character which is being transmitted using a UART). The
IOBUSY line is used to signal back to the Emulator that even though the Emulator is
stopped, the pod is still operating, and that it cannot answer any requests before the
IOBUSY goes inactive.

1.11 Example Designs

1.11.1 Basic I/O Example
Design

A simple test design using the Atmel ASIC ICEPRO POD is provided on a diskette
together with the ASIC ICE emulator. Information of how to use the pod is described in
ATasicICE POD User’s Manual. All files are found on the AVR ATasicICE AUXILIARY
FILES diskette.

The file xtestio.v is a verilog description of a design with the following specifications:

■ One 8-bit register at I/O location 0x1B (hex).

■ The register is initialized to 0.

■ The register can be read and written.

■ The contents of the register can be observed on the I/O pins marked as PortA on the

pod.

The clocks should be running all the time, and there are no interrupt services, so the sig-
nals cpuwait, irq[4:0], clkstopcore and clkstopio are all grounded, while clken is high.

There is a reset logic that stretches the reset pulse to 5 cycles and synchronizes it to the
internal clock.

To reset the register, the design makes use of the fact that the data bus from the AVR
core is 0 when IRESET is high. Under normal operation, the register is loaded with data
from the data bus when the iowe strobe is high, and the address bus has the value
0x1B.

Each time the IORE strobe signal is high and the address bus has the value 0x1B, the
register value is sent out to the internal data bus.

The PAD control is simply: If IORE is high, then send the internal data bus value out
from the FPGA. If not, send the external data bus into the FPGA. This means that there
is a value on the internal data bus even when the processor is not writing to any I/O
locations, but this is OK as long as the I/O does not use the data bus unless IORE is
high. Note that in this emulator, the IORE strobe is not high when I/O registers inside the
core are read. The designer will therefore never run into bus contention because both
the internal I/O and the POD I/O are responding simultaneously, (this is an emulator fea-
ture, in an ASIC, there is no need to use pads between the AVR core and the I/O.)

The pin placement script for a Synopsys™ / Xilinx™ FPGA environment is also provided.

You can download and test this design using the provided mcs-file, or use the pre-pro-
grammed FLASH.

ATasicICE Designer Guide

8 ATasicICE Designer Guide

1.11.2 AT90MEGA103 I/O
Example Design

The diskette includes an example of a large design: The Atmel ATmega103 I/O. The
complete Verilog code is not provided because it is an intellectual property of Atmel, and
not distributed. You can still download the FPGA and test it on the emulator.

Note: You will not be able to understand the design from this top-level description, but
the file is included as an example on how to implement large designs on the
ASIC emulator.

The basic concept for ASIC emulation is that the HDL-code from the ASIC should be
reused in the FPGA as much as possible in order to emulate the ASIC functionally.
Since it is 2 different types of technologies, you can never trust the timing, so we
strongly recommend that the design is a synchronous design.

The file x01838io.v is the top-level Verilog™ description of this design. x01838io.v
instantiates iomodule, wdog and sleepcnt. iomodule could be the same I/O verilog
description as used in the standard chip. The sleep controller (sleepcnt) makes use of
the clock gating logic in the emulator to control the sleep functions. A watch dog timer
(wdog) stretches the ireset signal and resets the circuit if it times out. It might be neces-
sary to make special versions of such modules in order to make use of the clock gating
functions in the ASIC emulator and simplify asynchronous logic in the FPGA.

Note: Under "//The interrupt system. IRQACKADR is made by delaying irqack", there
is a complete example on how to implement the interrupt priority encoder to the
avrcore.

Note that both xramre and iore must be considered for the pad control of this design,
since the external RAM space is in use.

If you want to test the on-board RAM on the POD, you must strap between the signals
xrepisdel and xrepnodel, and between xwepisdel and xwepnodel. This is a trick used to
delay the strobe signals to the external RAM, since it is difficult to control the timing
exactly in an FPGA (without designing specifically for FPGAs).

Note: Under the label "// Asynchronous timer stuff" there is an example on how the
clock signals should NOT be used. The extra multiplexer between clkio and
cktim makes the clock skew between the AVR core and the I/O larger and
should be avoided. Try to use the clock gating logic in the emulator only.

The pin placement script for this design is also provided on the disk.

Often, the there is a need to have different functions in a module when the AVR core
accesses the module and when the emulator is stopped, and the user wants to access
the module via the front end software. For instance, in a timer, you do not want the timer
to advance when the emulator is stopped and the user accesses the I/O. The file tim0.v
shows an example. The same verilog description is used in the ASIC and in the ASIC
emulator, but a compiler switch "EM" selects between these two situations. The signal
CLKRUN (called runmod in this module) determines whether the emulator is in stop
mode or not, and the counter is not advanced as long as runmod is high.

ATasicICE Designer Guide

ATasicICE Designer Guide 9

1.12 Appendix A:
Pod Connector

Direction as seen from the Emulator.

(*) Do not connect this pin to any power or I/O.

Pin(Dir) Connector Name Pin(Dir) Connector Name

1 (O) GND 33 (I/O) DBUS6

2 (O) GND 34 (O) IOWE

3 (O) ADR0 35 (I/O) DBUS7

4 (O) VDD 36 (O) MRAMACK

5 (O) ADR1 37 (O) IOEXTEND0

6 (O) ADR8 38 (I) IOBUSY

7 (O) ADR2 39 NC(*)

8 (O) ADR9 40 (O) IOEXTEND1

9 (O) ADR3 41 (O) GND

10 (O) ADR10 42 (O) IOEXTEND2

11 (O) ADR4 43 (O) CLKALWAYS

12 (O) ADR11 44 (I) EXTCLKIN

13 (O) ADR5 45 (O) EXTCLKEN

14 (O) ADR12 46 (O) CLKRUN

15 (O) ADR6 47 (O) CLKOSC

16 (O) ADR13 48 (O) CLKIO

17 (O) ADR7 49 (I) CLKSTOPIO

18 (O) ADR14 50 (I) CLKSTOPCORE

19 (O) ARESET 51 (I) CPUWAIT

20 (O) ADR15 52 (O) IOEXTEND3

21 (I/O) DBUS0 53 (O) IOEXTEND4

22 (O) SLEEPI 54 (I)

23 (I/O) DBUS1 55 (I) IRQ0

24 (O) WDRI 56 (I) IRQ1

25 (I/O) DBUS2 57 (I) IRQ2

26 (I) IRESET 58 (I) IRQ3

27 (I/O) DBUS3 59 (I) IRQ4

28 (O) XRAMRE 60 (O) IRQACK

29 (I/O) DBUS4 61 (O) GLOBINT

30 (O) XRAMWE 62 (O) IRQOK

31 (I/O) DBUS5 63 (O) GND

32 (O) IORE 64 (O) GND

10

AVR ATasicICE Designer Guide

1.13 Appendix B:
Basic I/O
Example Design
Verilog Files

xtestio.v
//**
// Module: xtestio
//
//
// Time of last save: $Date: 1998/02/17 08:25:27 $
// Revision: $Revision: 1.1 $
//
// Function:
// Short example of how to connect a simple I/O module to the ASIC
// ICEPRO.
// A register at I/O address 0x1B can be written and read. The content
// of this register is set on the output pins marked PORTA on the
// ATMEL ASIC ICEPRO pod.
//
//***

module xtestio (
 ireset, cpuwait,
 irq4,irq3,irq2,irq1,irq0,
 dbus7, dbus6, dbus5, dbus4, dbus3, dbus2, dbus1, dbus0,
 adr5, adr4, adr3, adr2, adr1, adr0,
 areset_b,
 iore, iowe,
 clkio, clken,
 clkstopcore,clkstopio,
 fio7, fio6, fio5, fio4, fio3, fio2, fio1, fio0);

 output ireset;// Synchronous reset (active high)
 output cpuwait;// HALT AVR core

 output irq4;// Interrupts
 output irq3;
 output irq2;
 output irq1;
 output irq0;

 inout dbus7;// data bus
 inout dbus6;
 inout dbus5;
 inout dbus4;
 inout dbus3;
 inout dbus2;
 inout dbus1;
 inout dbus0;

 input adr5;// The I/O address bus.
 input adr4;
 input adr3;
 input adr2;
 input adr1;
 input adr0;

 input areset_b;// Asynchronous reset (active low)
 input iore;// Read strobe
 input iowe;// Write strobe
 input clkio;// ckio from clock FPGA
 output clken;// Clock enable signal
 output clkstopcore;// Stop core clock
 output clkstopio;// Stop I/O clock

 output fio7;// Output port.
 output fio6;
 output fio5;

ATasicICE Designer Guide

ATasicICE Designer Guide 11

 output fio4;
 output fio3;
 output fio2;
 output fio1;
 output fio0;

// Declarations
 reg [5:0] sync_reset;
 reg [7:0]port_register;
 wire [7:0] dbus;
 wire [5:0] ioadr;
 wire port_reg_addr;

// Unused output signals to the AVR core or emulator
 assign cpuwait = 1'b0;
 assign {irq4,irq3,irq2,irq1,irq0} = 5'b0;
 assign clken = 1'b1;
 assign clkstopcore = 1'b0;
 assign clkstopio = 1'b0;

// Synchronize the asynchronous reset signal. Stretch reset signal to 5
pulses.
 always @(posedge clkio)
 sync_reset = {sync_reset[4:0], ~areset_b};

 assign ireset = |(sync_reset[5:1]);

// Pad control
 assign ioadr = {adr5, adr4, adr3, adr2, adr1, adr0};

 assign {dbus7,dbus6,dbus5,dbus4,dbus3,dbus2,dbus1,dbus0} = (iore) ? dbus :
8'bz;
 assign dbus = (~iore) ? {dbus7,dbus6,dbus5,dbus4,dbus3,dbus2,dbus1,dbus0}
:8'bz;
 assign {fio7,fio6,fio5,fio4,fio3,fio2,fio1,fio0} = port_register;

// Main function of the module
 assign port_reg_addr = (ioadr == 6'h 1b);
 assign dbus = ~(port_reg_addr & iore) ? 8'bz : port_register;
 always @(posedge clkio)
 if (ireset | port_reg_addr & iowe)
 port_register = dbus;

endmodule

ATasicICE Designer Guide

12 ATasicICE Designer Guide

set_pin_placement.scr
set_attribute{clkio} "pad_location"-typestring"P118"

set_attribute{clken} "pad_location"-typestring"P44"

set_attribute{clkstopcore} "pad_location"-typestring"P33"

set_attribute{clkstopio} "pad_location"-typestring"P32"

set_attribute{ireset} "pad_location"-typestring"P20"

set_attribute{areset_b} "pad_location"-typestring"P15"

set_attribute{cpuwait} "pad_location"-typestring"P34"

set_attribute{irq4} "pad_location"-typestring"P50"

set_attribute{irq3} "pad_location"-typestring"P49"

set_attribute{irq2} "pad_location"-typestring"P48"

set_attribute{irq1} "pad_location"-typestring"P47"

set_attribute{irq0} "pad_location"-typestring"P46"

set_attribute{dbus0} "pad_location"-typestring"P4"

set_attribute{dbus1} "pad_location"-typestring"P5"

set_attribute{dbus2} "pad_location"-typestring"P8"

set_attribute{dbus3} "pad_location"-typestring"P9"

set_attribute{dbus4} "pad_location"-typestring"P10"

set_attribute{dbus5} "pad_location"-typestring"P11"

set_attribute{dbus6} "pad_location"-typestring"P12"

set_attribute{dbus7} "pad_location"-typestring"P13"

set_attribute{adr5} "pad_location"-typestring"P230"

set_attribute{adr4} "pad_location"-typestring"P228"

set_attribute{adr3} "pad_location"-typestring"P225"

set_attribute{adr2} "pad_location"-typestring"P223"

set_attribute{adr1} "pad_location"-typestring"P217"

set_attribute{adr0} "pad_location"-typestring"P215"

set_attribute{iore} "pad_location"-typestring"P25"

set_attribute{iowe} "pad_location"-typestring"P26"

set_attribute{fio0} "pad_location"-typestring"P176"

set_attribute{fio1} "pad_location"-typestring"P175"

set_attribute{fio2} "pad_location"-typestring"P172"

set_attribute{fio3} "pad_location"-typestring"P171"

set_attribute{fio4} "pad_location"-typestring"P170"

set_attribute{fio5} "pad_location"-typestring"P169"

set_attribute{fio6} "pad_location"-typestring"P168"

set_attribute{fio7} "pad_location"-typestring"P167"

