
2325 Orchard Parkway •••• San Jose, CA •••• U.S.A.

AVR® C Code Benchmarks

Enclosed is a 15 page presentation on C Code Benchmarks which depicts the
AVR microcontroller against other popular 8-bit and 16-bit  processors. The
code is drawn from a varied selection of customer supplied applications, and
was compiled using the native compiler for that processor.

Discussion of the Benchmarking Process

Making a C Code benchmark is not an objective issue and presenting these
figures may result in comments which may have experience which differs
from what we present here. The following general comments should be noted
on C Code benchmarking:

• Which microcontroller is the most code-efficient is application dependent,
and there is no single best microcontroller for all applications.

• Benchmarks, like statistics, can be constructed to show anything. Every
microcontroller has its strengths, and by constructing applications which
utilizes these specific strengths, any microcontroller can be claimed to be
the most code-efficient.

• Our goal with this presentation is not to claim that we are the single most
code-efficient microcontroller, but to support our claim that we have a very
High-Level Language suitable architecture.

The AVR is not the most code-efficient of the group, but can be found among
the top three in seven of the nine benchmarks and, as shown in the summary,
it comes out favorably compared to the other controllers. No applications
have been omitted from the benchmark due to bad performance of the AVR.

Comments on the Summaries

Accumulated
Since not all code could be compiled for all compilers, all the indexes are
relative to AVR. Only the applications that could be compiled for both
applications are summed and the ratio between the code sizes is displayed.

Normalized
Since not all code could be compiled for all compilers, all the indexes are
relative to AVR. Only the applications that could be compiled for both
applications are used and the ratio between every two applications is
computed. The averaged ratio is displayed in the figure.



2325 Orchard Parkway •••• San Jose, CA •••• U.S.A.

These results are coherent with the Accumulated results on the previous
slide, but there is some variation in the factors due to different methods of
computing the factor.

Comments on the Summaries

Most of the compilers used are from IAR Systems Ltd. The advantage of
using the same compiler company for most of the processors is that the
difference in the code size does not depend on the global optimization which
all compilers will benefit from, but largely due to architectural differences.

IAR does not have any Compiler for ARM7/ARM Thumb.

Some of the compilers exist in later versions, so the results might be better for
some of the microcontrollers.

The AVR C Compiler is, compared to many of our competitors, a relatively
young compiler. The AVR C Compiler still gains significant code size
decrease in every new release of the compiler.



NOV98

 ENHANCED RISC MICROCONTROLLERS

C Code Benchmark Presentation



NOV98

 ENHANCED RISC MICROCONTROLLERS

C Code Benchmarks

� Nine applications, all based on actual customer
code

� Varied application areas
� Byte usage in individual applications
� Summarized results reported as

– Normalized Accumulated Results

– Averaged Normalized Results



NOV98

 ENHANCED RISC MICROCONTROLLERS

Pager protocol

0

2000

4000

6000

8000

68HC11 AVR Thumb H8/500 Z80 80196 H8/300H Arm7 80C51 H8/300

#B
yt

es

� Three layer protocol

� Includes simple driver



NOV98

 ENHANCED RISC MICROCONTROLLERS

Analog Telephone I

0

1000

2000
3000

4000

5000

6000

AVR Thumb 68HC11 Z80 H8/500 80196 80C51 H8/300H ARM7 H8/300

#B
yt

es

� SIM Interface

� Parts of display driver



NOV98

 ENHANCED RISC MICROCONTROLLERS

Analog Telephone II

0

5000

10000
15000

20000

25000

30000

AVR Thumb 68HC11 H8/500 ARM7 H8/300H H8/300 80C51

#B
yt

es

� Automatically generated code

� State Machine based



NOV98

 ENHANCED RISC MICROCONTROLLERS

Reed-Solomon

0

2000

4000

6000

8000

Thumb H8/500 ARM7 AVR 68HC11 H8/300H Z80 80C51 H8/300

#B
yt

es

� Reed-Solomon Encoder/Decoder



NOV98

 ENHANCED RISC MICROCONTROLLERS

Car Radio Control

0

200

400

600

800

1000

1200

Z80 AVR 80C51 H8/500 68HC11 Thumb H8/300H ARM7 H8/300

#B
yt

es

� Skeleton application

� Control Flow and Bitfields



NOV98

 ENHANCED RISC MICROCONTROLLERS

C Bitfields

0

500

1000

1500

2000

2500

AVR Thumb Z80 68HC11 80C51 H8/500 ARM7 H8/300H H8/300

#B
yt

es

� Benchmark code from customer

� 8-bit and 16-bit bitfield variables



NOV98

 ENHANCED RISC MICROCONTROLLERS

Analog Telephone III

0
200

400
600
800

1000
1200

H8/500 68HC11 AVR Z80 H8/300H 80C51 H8/300

#B
yt

es

� Representative collection of routines from an analog
telephone application



NOV98

 ENHANCED RISC MICROCONTROLLERS

DES Algorithm

0

500

1000

1500

2000

2500

3000

Thumb H8/500 AVR 68HC11 Z80 ARM7 H8/300H 80C51 H8/300

#B
yt

es

� Encryption/Decryption algorithm



NOV98

 ENHANCED RISC MICROCONTROLLERS

Navigation Application

0

5000

10000

15000

H8/500 Thumb 68HC11 AVR Z80 80C51 ARM7

#B
yt

es

� Complete application

� Communication, measurement and computations



NOV98

 ENHANCED RISC MICROCONTROLLERS

Accumulated Over All Benchmarks

0

0,5

1

1,5

2

2,5

AVR Thumb H8/500 68HC11 Z80 80196 ARM7 H8/300H 80C51 H8/300

N
or

m
al

iz
ed

� Indexes based on accumulated sizes

� Large applications count more than small applications



NOV98

 ENHANCED RISC MICROCONTROLLERS

Normalized over all Benchmarks

0

0,5

1

1,5

2

AVR Thumb H8/500 68HC11 Z80 80196 ARM7 H8/300H 80C51 H8/300

N
or

m
al

iz
ed

� Averaged indexes from all applications

� All applications count evenly



NOV98

 ENHANCED RISC MICROCONTROLLERS

In Summary

� Nine C Code Benchmarks from various
application areas

� No single microcontroller best for all applications

� AVR in the top range for all the applications



NOV98

 ENHANCED RISC MICROCONTROLLERS

C Compilers Used
� AVR: IAR ICCA90 version 1.40
� 80C51: IAR ICC8051 version 5.20
� Thumb: ARM tcc version 1.02b
� ARM: ARM armcc version 4.66b
� 80196: IAR icc196 version 5.20a
� Z80: IAR iccz80 version 4.03a
� H8/300(H): IAR icch83 version 3.22
� H8/500: IAR icch8500 version 2.92g
� 68HC11: IAR icc6811 version 4.20B


