Sun Microsystems, Inc.
spacerspacer
spacer www.sun.com docs.sun.com |
spacer
black dot
 
 
5.  TCP/IP (Reference) How a Machine Determines if It Is a Router  Previous   Contents   Next 
   
 

Parts of the IPv4 Address

Each network that runs TCP/IP must have a unique network number. Every machine on the network must have a unique IP address. You must understand how IP addresses are constructed before you register your network and obtain its network number. This section describes IPv4 addresses. For information on IPv6 addresses, see "IPv6 Addressing".

The IPv4 address is a 32-bit number that uniquely identifies a network interface on a machine. An IPv4 address is typically written in decimal digits, formatted as four 8-bit fields that are separated by periods. Each 8-bit field represents a byte of the IPv4 address. This form of representing the bytes of an IPv4 address is often referred to as the dotted-decimal format.

The bytes of the IPv4 address are further classified into two parts: the network part and the host part. The following figure shows the component parts of a typical IPv4 address, 129.144.50.56.

Figure 5-3 Parts of an IPv4 Address

Network Part

The network part specifies the unique number that is assigned to your network. The network part also identifies the class of network that is assigned. In Figure 5-3, the network part occupies two bytes of the IPv4 address.

Host Part

This is the part of the IPv4 address that you assign to each host. The host part uniquely identifies this machine on your network. Note that for each host on your network, the network part of the address is the same, but the host part must be different.

Subnet Number (Optional)

Local networks with large numbers of hosts are sometimes divided into subnets. If you choose to divide your network into subnets, you need to assign a subnet number for the subnet. You can maximize the efficiency of the IPv4 address space by using some of the bits from the host number part of the IPv4 address as a network identifier. When used as a network identifier, the specified part of the address becomes the subnet number. You create a subnet number by using a netmask, which is a bitmask that selects the network and subnet parts of an IPv4 address. Refer to "Creating the Network Mask for IPv4 Addresses" for details.

Network Classes

The first step in planning for IPv4 addressing on your network is to determine which network class is appropriate for your network. After you have completed this step, you can move to the crucial second step: obtain the network number from the InterNIC addressing authority.

Currently there are three classes of TCP/IP networks. Each class uses the 32-bit IPv4 address space differently, providing more or fewer bits for the network part of the address. These classes are class A, class B, and class C.

Class A Network Numbers

A class A network number uses the first 8 bits of the IPv4 address as its "network part." The remaining 24 bits compose the host part of the IPv4 address, as the following figure illustrates.

Figure 5-4 Byte Assignment in a Class A Address

The values that are assigned to the first byte of class A network numbers fall within the range 0-127. Consider the IPv4 address 75.4.10.4. The value 75 in the first byte indicates that the host is on a class A network. The remaining bytes, 4.10.4, establish the host address. The InterNIC assigns only the first byte of a class A number. Use of the remaining three bytes is left to the discretion of the owner of the network number. Only 127 class A networks can exist. Each one of these numbers can accommodate a maximum of 16,777,214 hosts.

Class B Network Numbers

A class B network number uses 16 bits for the network number and 16 bits for host numbers. The first byte of a class B network number is in the range 128-191. In the number 129.144.50.56, the first two bytes, 129.144, are assigned by the InterNIC, and compose the network address. The last two bytes, 50.56, compose the host address, and are assigned at the discretion of the owner of the network number. The following figure graphically illustrates a class B address.

Figure 5-5 Byte Assignment in a Class B Address

Class B is typically assigned to organizations with many hosts on their networks.

Class C Network Numbers

Class C network numbers use 24 bits for the network number and 8 bits for host numbers. Class C network numbers are appropriate for networks with few hosts--the maximum being 254. A class C network number occupies the first three bytes of an IPv4 address. Only the fourth byte is assigned at the discretion of the network owners. The following figure graphically represents the bytes in a class C address.

Figure 5-6 Byte Assignment in a Class C Address

The first byte of a class C network number covers the range 192-223. The second and third bytes each cover the range 1- 255. A typical class C address might be 192.5.2.5. The first three bytes, 192.5.2, form the network number. The final byte in this example, 5, is the host number.

 
 
 
  Previous   Contents   Next