|
The elf_update() function causes the library to examine the information associated with an ELF descriptor, elf, and to recalculate the structural data needed to generate the file's image.
The cmd argument can have the following values:
-
ELF_C_NULL
- This value tells elf_update() to recalculate various values, updating only the ELF descriptor's memory structures. Any modified structures are flagged
with the ELF_F_DIRTY bit. A program thus can update the structural information and then reexamine them without changing the file associated with the ELF descriptor. Because this does not change the file, the ELF descriptor may allow reading, writing, or both reading and writing (see elf_begin (3ELF)).
-
ELF_C_WRITE
- If cmd has this value, elf_update() duplicates its ELF_C_NULL actions and also writes any ``dirty'' information associated
with the ELF descriptor to the file. That is, when a program has used elf_getdata(3ELF) or the elf_flagdata(3ELF) facilities to supply new (or update existing) information for an ELF descriptor, those data will be examined, coordinated, translated if necessary (see elf32_xlatetof(3ELF)), and written to the file. When portions of the file are written, any ELF_F_DIRTY bits are reset, indicating those items no longer need to be written to the file (see elf_flagdata(3ELF)). The sections' data are written in the order of their section header entries, and the section header table is written to the end of the file. When the ELF descriptor was created with elf_begin(), it must have allowed writing the file. That is, the elf_begin() command must have been either ELF_C_RDWR or ELF_C_WRITE.
If elf_update() succeeds, it returns the total size of the file image (not the memory image), in bytes. Otherwise an error occurred, and the function returns -1.
When updating the internal structures, elf_update() sets some members itself. Members listed below are the application's responsibility and retain the values given by the program.
The following table shows ELF Header members:
Member | Notes |
| |
e_ident[EI_DATA] | Library controls other e_ident values |
e_type | |
e_machine | |
e_version | |
e_entry | |
e_phoff | Only when ELF_F_LAYOUT asserted |
e_shoff | Only when ELF_F_LAYOUT asserted |
e_flags | |
e_shstrndx | |
The following table shows the Program Header members:
Member | Notes |
| |
p_type | The application controls all |
p_offset | program header entries |
p_vaddr | |
p_paddr | |
p_filesz | |
p_memsz | |
p_flags | |
p_align | |
The following table shows the Section Header members:
Member | Notes |
| |
sh_name | |
sh_type | |
sh_flags | |
sh_addr | |
sh_offset | Only when ELF_F_LAYOUT asserted |
sh_size | Only when ELF_F_LAYOUT asserted |
sh_link | |
sh_info | |
sh_addralign | Only when ELF_F_LAYOUT asserted |
sh_entsize | |
The following table shows the Data Descriptor members:
Member | Notes |
| |
d_buf | |
d_type | |
d_size | |
d_off | Only when ELF_F_LAYOUT asserted |
d_align | |
d_version | |
Note that the program is responsible for two particularly important members (among others) in the ELF header. The e_version member controls the version of data structures written to the file. If the version is EV_NONE, the library
uses its own internal version. The e_ident[EI_DATA] entry controls the data encoding used in the file. As a special case, the value may be ELFDATANONE to request the native data encoding for the host machine. An error occurs in this case if
the native encoding doesn't match a file encoding known by the library.
Further note that the program is responsible for the sh_entsize section header member. Although the library sets it for sections with known types, it cannot reliably know the correct value for all sections. Consequently, the library relies on the program to provide the values
for unknown section types. If the entry size is unknown or not applicable, the value should be set to 0.
When deciding how to build the output file, elf_update() obeys the alignments of individual data buffers to create output sections. A section's most strictly aligned data buffer controls the section's alignment. The library also inserts padding between buffers, as necessary, to
ensure the proper alignment of each buffer.
|