Sun Microsystems, Inc.
spacerspacer
spacer   www.sun.com docs.sun.com | | |  
spacer
black dot
   
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z
    
 
Kernel Functions for Driverscsx_RequestIO(9F)


NAME

 csx_RequestIO, csx_ReleaseIO - request or release I/O resources for the client

SYNOPSIS

 
#include <sys/pccard.h>
int32_t csx_RequestIO(client_handle_t ch, io_req_t *ir);
 int32_t csx_ReleaseIO(client_handle_t ch, io_req_t *ir);

INTERFACE LEVEL

 

Solaris DDI Specific (Solaris DDI)

PARAMETERS

 
ch
Client handle returned from csx_RegisterClient(9F).
ir
Pointer to an io_req_t structure.

DESCRIPTION

 

The functions csx_RequestIO() and csx_ReleaseIO() request or release, respectively, I/O resources for the client.

If a client requires I/O resources, csx_RequestIO() must be called to request I/O resources from Card Services; then csx_RequestConfiguration(9F) must be used to establish the configuration. csx_RequestIO() can be called multiple times until a successful set of I/O resources is found. csx_RequestConfiguration(9F) only uses the last configuration specified.

csx_RequestIO() fails if it has already been called without a corresponding csx_ReleaseIO().

csx_ReleaseIO() releases previously requested I/O resources. The Card Services window resource list is adjusted by this function. Depending on the adapter hardware, the I/O window might also be disabled.

STRUCTURE MEMBERS

 

The structure members of io_req_t are:

 
uint32_t       Socket;            /* socket number*/

uint32_t       Baseport1.base;    /* IO range base port address */
acc_handle_t   Baseport1.handle;  /* IO range base address 
                                  /*   or port num */
uint32_t       NumPorts1;         /* first IO range number contiguous 
                                  /*   ports */
uint32_t       Attributes1;       /* first IO range attributes */

uint32_t       Baseport2.base;    /* IO range base port address */
acc_handle_t   Baseport2.handle;  /* IO range base address or port num */
uint32_t       NumPorts2;         /* second IO range number contiguous 
                                  /*   ports */
uint32_t       Attributes2;       /* second IO range attributes */

uint32_t       IOAddrLines;       /* number of IO address lines decoded */

The fields are defined as follows:

Socket
Not used in Solaris, but for portability with other Card Services implementations, it should be set to the logical socket number.
BasePort1.base
BasePort1.handle
BasePort2.base
BasePort2.handle
Two I/O address ranges can be requested by csx_RequestIO(). Each I/O address range is specified by the BasePort, NumPorts, and Attributes fields. If only a single I/O range is being requested, the NumPorts2 field must be reset to 0.

When calling csx_RequestIO(), the BasePort.base field specifies the first port address requested. Upon successful return from csx_RequestIO(), the BasePort.handle field contains an access handle, corresponding to the first byte of the allocated I/O window, which the client must use when accessing the PC Card's I/O space via the common access functions. A client must not make any assumptions as to the format of the returned BasePort.handle field value.

If the BasePort.base field is set to 0, Card Services returns an I/O resource based on the available I/O resources and the number of contiguous ports requested. When BasePort.base is 0, Card Services aligns the returned resource in the host system's I/O address space on a boundary that is a multiple of the number of contiguous ports requested, rounded up to the nearest power of two. For example, if a client requests two I/O ports, the resource returned will be a multiple of two. If a client requests five contiguous I/O ports, the resource returned will be a multiple of eight.

If multiple ranges are being requested, at least one of the BasePort.base fields must be non-zero.

NumPorts
This field is the number of contiguous ports being requested.
Attributes
This field is bit-mapped. The following bits are defined:
IO_DATA_WIDTH_8
I/O resource uses 8-bit data path.
IO_DATA_WIDTH_16
I/O resource uses 16-bit data path.
WIN_ACC_NEVER_SWAP
Host endian byte ordering.
WIN_ACC_BIG_ENDIAN
Big endian byte ordering
WIN_ACC_LITTLE_ENDIAN
Little endian byte ordering.
WIN_ACC_STRICT_ORDER
Program ordering references.
WIN_ACC_UNORDERED_OK
May re-order references.
WIN_ACC_MERGING_OK
Merge stores to consecutive locations.
WIN_ACC_LOADCACHING_OK
May cache load operations.
WIN_ACC_STORECACHING_OK
May cache store operations.

For some combinations of host system busses and adapter hardware, the width of an I/O resource can not be set via RequestIO(); on those systems, the host bus cycle access type determines the I/O resource data path width on a per-cycle basis.

WIN_ACC_BIG_ENDIAN and WIN_ACC_LITTLE ENDIAN describe the endian characteristics of the device as big endian or little endian, respectively. Even though most of the devices will have the same endian characteristics as their busses, there are examples of devices with an I/O processor that has opposite endian characteristics of the busses. When WIN_ACC_BIG_ENDIAN or WIN_ACC_LITTLE ENDIAN is set, byte swapping will automatically be performed by the system if the host machine and the device data formats have opposite endian characteristics. The implementation may take advantage of hardware platform byte swapping capabilities.

When WIN_ACC_NEVER_SWAP is specified, byte swapping will not be invoked in the data access functions. The ability to specify the order in which the CPU will reference data is provided by the following Attributes bits. Only one of the following bits may be specified:

WIN_ACC_STRICT_ORDER
The data references must be issued by a CPU in program order. Strict ordering is the default behavior.
WIN_ACC_UNORDERED_OK
The CPU may re-order the data references. This includes all kinds of re-ordering (that is, a load followed by a store may be replaced by a store followed by a load).
WIN_ACC_MERGING_OK
The CPU may merge individual stores to consecutive locations. For example, the CPU may turn two consecutive byte stores into one halfword store. It may also batch individual loads. For example, the CPU may turn two consecutive byte loads into one halfword load. IO_MERGING_OK_ACC also implies re-ordering.
WIN_ACC_LOADCACHING_OK
The CPU may cache the data it fetches and reuse it until another store occurs. The default behavior is to fetch new data on every load. WIN_ACC_LOADCACHING_OK also implies merging and re-ordering.
WIN_ACC_STORECACHING_OK
The CPU may keep the data in the cache and push it to the device (perhaps with other data) at a later time. The default behavior is to push the data right away. WIN_ACC_STORECACHING_OK also implies load caching, merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered without being merged or cached, even though a driver requests unordered, merged and cached together. All other bits in the Attributes field must be set to 0.

IOAddrLines
This field is the number of I/O address lines decoded by the PC Card in the specified socket.

On some systems, multiple calls to csx_RequestIO() with different BasePort, NumPorts, and/or IOAddrLines values will have to be made to find an acceptable combination of parameters that can be used by Card Services to allocate I/O resources for the client. (See NOTES).

RETURN VALUES

 
CS_SUCCESS
Successful operation.
CS_BAD_ATTRIBUTE
Invalid Attributes specified.
CS_BAD_BASE
BasePort value is invalid.
CS_BAD_HANDLE
Client handle is invalid.
CS_CONFIGURATION_LOCKED
csx_RequestConfiguration(9F) has already been done.
CS_IN_USE
csx_RequestIO() has already been done without a corresponding csx_ReleaseIO().
CS_NO_CARD
No PC Card in socket.
CS_BAD_WINDOW
Unable to allocate I/O resources.
CS_OUT_OF_RESOURCE
Unable to allocate I/O resources.
CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

CONTEXT

 

These functions may be called from user or kernel context.

SEE ALSO

 

csx_RegisterClient(9F), csx_RequestConfiguration(9F)

PC Card 95 Standard, PCMCIA/JEIDA

NOTES

 

It is important for clients to try to use the minimum amount of I/O resources necessary. One way to do this is for the client to parse the CIS of the PC Card and call csx_RequestIO() first with any IOAddrLines values that are 0 or that specify a minimum number of address lines necessary to decode the I/O space on the PC Card. Also, if no convenient minimum number of address lines can be used to decode the I/O space on the PC Card, it is important to try to avoid system conflicts with well-known architectural hardware features.


SunOS 5.9Go To TopLast Changed 19 Jul 1996

 
      
      
Copyright 2002 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms.